Files
OpenPCDet/pcdet/models/dense_heads/point_intra_part_head.py
2025-09-21 20:19:04 +08:00

128 lines
5.4 KiB
Python

import torch
from ...utils import box_coder_utils, box_utils
from .point_head_template import PointHeadTemplate
class PointIntraPartOffsetHead(PointHeadTemplate):
"""
Point-based head for predicting the intra-object part locations.
Reference Paper: https://arxiv.org/abs/1907.03670
From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network
"""
def __init__(self, num_class, input_channels, model_cfg, predict_boxes_when_training=False, **kwargs):
super().__init__(model_cfg=model_cfg, num_class=num_class)
self.predict_boxes_when_training = predict_boxes_when_training
self.cls_layers = self.make_fc_layers(
fc_cfg=self.model_cfg.CLS_FC,
input_channels=input_channels,
output_channels=num_class
)
self.part_reg_layers = self.make_fc_layers(
fc_cfg=self.model_cfg.PART_FC,
input_channels=input_channels,
output_channels=3
)
target_cfg = self.model_cfg.TARGET_CONFIG
if target_cfg.get('BOX_CODER', None) is not None:
self.box_coder = getattr(box_coder_utils, target_cfg.BOX_CODER)(
**target_cfg.BOX_CODER_CONFIG
)
self.box_layers = self.make_fc_layers(
fc_cfg=self.model_cfg.REG_FC,
input_channels=input_channels,
output_channels=self.box_coder.code_size
)
else:
self.box_layers = None
def assign_targets(self, input_dict):
"""
Args:
input_dict:
point_features: (N1 + N2 + N3 + ..., C)
batch_size:
point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z]
gt_boxes (optional): (B, M, 8)
Returns:
point_cls_labels: (N1 + N2 + N3 + ...), long type, 0:background, -1:ignored
point_part_labels: (N1 + N2 + N3 + ..., 3)
"""
point_coords = input_dict['point_coords']
gt_boxes = input_dict['gt_boxes']
assert gt_boxes.shape.__len__() == 3, 'gt_boxes.shape=%s' % str(gt_boxes.shape)
assert point_coords.shape.__len__() in [2], 'points.shape=%s' % str(point_coords.shape)
batch_size = gt_boxes.shape[0]
extend_gt_boxes = box_utils.enlarge_box3d(
gt_boxes.view(-1, gt_boxes.shape[-1]), extra_width=self.model_cfg.TARGET_CONFIG.GT_EXTRA_WIDTH
).view(batch_size, -1, gt_boxes.shape[-1])
targets_dict = self.assign_stack_targets(
points=point_coords, gt_boxes=gt_boxes, extend_gt_boxes=extend_gt_boxes,
set_ignore_flag=True, use_ball_constraint=False,
ret_part_labels=True, ret_box_labels=(self.box_layers is not None)
)
return targets_dict
def get_loss(self, tb_dict=None):
tb_dict = {} if tb_dict is None else tb_dict
point_loss_cls, tb_dict = self.get_cls_layer_loss(tb_dict)
point_loss_part, tb_dict = self.get_part_layer_loss(tb_dict)
point_loss = point_loss_cls + point_loss_part
if self.box_layers is not None:
point_loss_box, tb_dict = self.get_box_layer_loss(tb_dict)
point_loss += point_loss_box
return point_loss, tb_dict
def forward(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
point_features: (N1 + N2 + N3 + ..., C) or (B, N, C)
point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z]
point_labels (optional): (N1 + N2 + N3 + ...)
gt_boxes (optional): (B, M, 8)
Returns:
batch_dict:
point_cls_scores: (N1 + N2 + N3 + ..., 1)
point_part_offset: (N1 + N2 + N3 + ..., 3)
"""
point_features = batch_dict['point_features']
point_cls_preds = self.cls_layers(point_features) # (total_points, num_class)
point_part_preds = self.part_reg_layers(point_features)
ret_dict = {
'point_cls_preds': point_cls_preds,
'point_part_preds': point_part_preds,
}
if self.box_layers is not None:
point_box_preds = self.box_layers(point_features)
ret_dict['point_box_preds'] = point_box_preds
point_cls_scores = torch.sigmoid(point_cls_preds)
point_part_offset = torch.sigmoid(point_part_preds)
batch_dict['point_cls_scores'], _ = point_cls_scores.max(dim=-1)
batch_dict['point_part_offset'] = point_part_offset
if self.training:
targets_dict = self.assign_targets(batch_dict)
ret_dict['point_cls_labels'] = targets_dict['point_cls_labels']
ret_dict['point_part_labels'] = targets_dict.get('point_part_labels')
ret_dict['point_box_labels'] = targets_dict.get('point_box_labels')
if self.box_layers is not None and (not self.training or self.predict_boxes_when_training):
point_cls_preds, point_box_preds = self.generate_predicted_boxes(
points=batch_dict['point_coords'][:, 1:4],
point_cls_preds=point_cls_preds, point_box_preds=ret_dict['point_box_preds']
)
batch_dict['batch_cls_preds'] = point_cls_preds
batch_dict['batch_box_preds'] = point_box_preds
batch_dict['batch_index'] = batch_dict['point_coords'][:, 0]
batch_dict['cls_preds_normalized'] = False
self.forward_ret_dict = ret_dict
return batch_dict