Files
OpenPCDet/pcdet/models/detectors/second_net_iou.py
2025-09-21 20:18:47 +08:00

178 lines
7.3 KiB
Python

import torch
from .detector3d_template import Detector3DTemplate
from ..model_utils.model_nms_utils import class_agnostic_nms
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
class SECONDNetIoU(Detector3DTemplate):
def __init__(self, model_cfg, num_class, dataset):
super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
self.module_list = self.build_networks()
def forward(self, batch_dict):
batch_dict['dataset_cfg'] = self.dataset.dataset_cfg
for cur_module in self.module_list:
batch_dict = cur_module(batch_dict)
if self.training:
loss, tb_dict, disp_dict = self.get_training_loss()
ret_dict = {
'loss': loss
}
return ret_dict, tb_dict, disp_dict
else:
pred_dicts, recall_dicts = self.post_processing(batch_dict)
return pred_dicts, recall_dicts
def get_training_loss(self):
disp_dict = {}
loss_rpn, tb_dict = self.dense_head.get_loss()
loss_rcnn, tb_dict = self.roi_head.get_loss(tb_dict)
loss = loss_rpn + loss_rcnn
return loss, tb_dict, disp_dict
@staticmethod
def cal_scores_by_npoints(cls_scores, iou_scores, num_points_in_gt, cls_thresh=10, iou_thresh=100):
"""
Args:
cls_scores: (N)
iou_scores: (N)
num_points_in_gt: (N, 7+c)
cls_thresh: scalar
iou_thresh: scalar
"""
assert iou_thresh >= cls_thresh
alpha = torch.zeros(cls_scores.shape, dtype=torch.float32).cuda()
alpha[num_points_in_gt <= cls_thresh] = 0
alpha[num_points_in_gt >= iou_thresh] = 1
mask = ((num_points_in_gt > cls_thresh) & (num_points_in_gt < iou_thresh))
alpha[mask] = (num_points_in_gt[mask] - 10) / (iou_thresh - cls_thresh)
scores = (1 - alpha) * cls_scores + alpha * iou_scores
return scores
def set_nms_score_by_class(self, iou_preds, cls_preds, label_preds, score_by_class):
n_classes = torch.unique(label_preds).shape[0]
nms_scores = torch.zeros(iou_preds.shape, dtype=torch.float32).cuda()
for i in range(n_classes):
mask = label_preds == (i + 1)
class_name = self.class_names[i]
score_type = score_by_class[class_name]
if score_type == 'iou':
nms_scores[mask] = iou_preds[mask]
elif score_type == 'cls':
nms_scores[mask] = cls_preds[mask]
else:
raise NotImplementedError
return nms_scores
def post_processing(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
batch_cls_preds: (B, num_boxes, num_classes | 1) or (N1+N2+..., num_classes | 1)
batch_box_preds: (B, num_boxes, 7+C) or (N1+N2+..., 7+C)
cls_preds_normalized: indicate whether batch_cls_preds is normalized
batch_index: optional (N1+N2+...)
roi_labels: (B, num_rois) 1 .. num_classes
Returns:
"""
post_process_cfg = self.model_cfg.POST_PROCESSING
batch_size = batch_dict['batch_size']
recall_dict = {}
pred_dicts = []
for index in range(batch_size):
if batch_dict.get('batch_index', None) is not None:
assert batch_dict['batch_cls_preds'].shape.__len__() == 2
batch_mask = (batch_dict['batch_index'] == index)
else:
assert batch_dict['batch_cls_preds'].shape.__len__() == 3
batch_mask = index
box_preds = batch_dict['batch_box_preds'][batch_mask]
iou_preds = batch_dict['batch_cls_preds'][batch_mask]
cls_preds = batch_dict['roi_scores'][batch_mask]
src_iou_preds = iou_preds
src_box_preds = box_preds
src_cls_preds = cls_preds
assert iou_preds.shape[1] in [1, self.num_class]
if not batch_dict['cls_preds_normalized']:
iou_preds = torch.sigmoid(iou_preds)
cls_preds = torch.sigmoid(cls_preds)
if post_process_cfg.NMS_CONFIG.MULTI_CLASSES_NMS:
raise NotImplementedError
else:
iou_preds, label_preds = torch.max(iou_preds, dim=-1)
label_preds = batch_dict['roi_labels'][index] if batch_dict.get('has_class_labels', False) else label_preds + 1
if post_process_cfg.NMS_CONFIG.get('SCORE_BY_CLASS', None) and \
post_process_cfg.NMS_CONFIG.SCORE_TYPE == 'score_by_class':
nms_scores = self.set_nms_score_by_class(
iou_preds, cls_preds, label_preds, post_process_cfg.NMS_CONFIG.SCORE_BY_CLASS
)
elif post_process_cfg.NMS_CONFIG.get('SCORE_TYPE', None) == 'iou' or \
post_process_cfg.NMS_CONFIG.get('SCORE_TYPE', None) is None:
nms_scores = iou_preds
elif post_process_cfg.NMS_CONFIG.SCORE_TYPE == 'cls':
nms_scores = cls_preds
elif post_process_cfg.NMS_CONFIG.SCORE_TYPE == 'weighted_iou_cls':
nms_scores = post_process_cfg.NMS_CONFIG.SCORE_WEIGHTS.iou * iou_preds + \
post_process_cfg.NMS_CONFIG.SCORE_WEIGHTS.cls * cls_preds
elif post_process_cfg.NMS_CONFIG.SCORE_TYPE == 'num_pts_iou_cls':
point_mask = (batch_dict['points'][:, 0] == batch_mask)
batch_points = batch_dict['points'][point_mask][:, 1:4]
num_pts_in_gt = roiaware_pool3d_utils.points_in_boxes_cpu(
batch_points.cpu(), box_preds[:, 0:7].cpu()
).sum(dim=1).float().cuda()
score_thresh_cfg = post_process_cfg.NMS_CONFIG.SCORE_THRESH
nms_scores = self.cal_scores_by_npoints(
cls_preds, iou_preds, num_pts_in_gt,
score_thresh_cfg.cls, score_thresh_cfg.iou
)
else:
raise NotImplementedError
selected, selected_scores = class_agnostic_nms(
box_scores=nms_scores, box_preds=box_preds,
nms_config=post_process_cfg.NMS_CONFIG,
score_thresh=post_process_cfg.SCORE_THRESH
)
if post_process_cfg.OUTPUT_RAW_SCORE:
raise NotImplementedError
final_scores = selected_scores
final_labels = label_preds[selected]
final_boxes = box_preds[selected]
recall_dict = self.generate_recall_record(
box_preds=final_boxes if 'rois' not in batch_dict else src_box_preds,
recall_dict=recall_dict, batch_index=index, data_dict=batch_dict,
thresh_list=post_process_cfg.RECALL_THRESH_LIST
)
record_dict = {
'pred_boxes': final_boxes,
'pred_scores': final_scores,
'pred_labels': final_labels,
'pred_cls_scores': cls_preds[selected],
'pred_iou_scores': iou_preds[selected]
}
pred_dicts.append(record_dict)
return pred_dicts, recall_dict