301 lines
10 KiB
Python
301 lines
10 KiB
Python
from functools import partial
|
|
|
|
import torch.nn as nn
|
|
|
|
from ...utils.spconv_utils import replace_feature, spconv
|
|
|
|
|
|
def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0,
|
|
conv_type='subm', norm_fn=None):
|
|
|
|
if conv_type == 'subm':
|
|
conv = spconv.SubMConv2d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key)
|
|
elif conv_type == 'spconv':
|
|
conv = spconv.SparseConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
|
|
bias=False, indice_key=indice_key)
|
|
elif conv_type == 'inverseconv':
|
|
conv = spconv.SparseInverseConv2d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
m = spconv.SparseSequential(
|
|
conv,
|
|
norm_fn(out_channels),
|
|
nn.ReLU(),
|
|
)
|
|
|
|
return m
|
|
|
|
|
|
def post_act_block_dense(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, norm_fn=None):
|
|
m = nn.Sequential(
|
|
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding, dilation=dilation, bias=False),
|
|
norm_fn(out_channels),
|
|
nn.ReLU(),
|
|
)
|
|
|
|
return m
|
|
|
|
|
|
class SparseBasicBlock(spconv.SparseModule):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None):
|
|
super(SparseBasicBlock, self).__init__()
|
|
|
|
assert norm_fn is not None
|
|
bias = norm_fn is not None
|
|
self.conv1 = spconv.SubMConv2d(
|
|
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
|
|
)
|
|
self.bn1 = norm_fn(planes)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = spconv.SubMConv2d(
|
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
|
|
)
|
|
self.bn2 = norm_fn(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = replace_feature(out, self.bn1(out.features))
|
|
out = replace_feature(out, self.relu(out.features))
|
|
|
|
out = self.conv2(out)
|
|
out = replace_feature(out, self.bn2(out.features))
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out = replace_feature(out, out.features + identity.features)
|
|
out = replace_feature(out, self.relu(out.features))
|
|
|
|
return out
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None):
|
|
super(BasicBlock, self).__init__()
|
|
|
|
assert norm_fn is not None
|
|
bias = norm_fn is not None
|
|
self.conv1 = nn.Conv2d(inplanes, planes, 3, stride=stride, padding=1, bias=bias)
|
|
self.bn1 = norm_fn(planes)
|
|
self.relu = nn.ReLU()
|
|
self.conv2 = nn.Conv2d(planes, planes, 3, stride=stride, padding=1, bias=bias)
|
|
self.bn2 = norm_fn(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out = out + identity
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class PillarBackBone8x(nn.Module):
|
|
def __init__(self, model_cfg, input_channels, grid_size, **kwargs):
|
|
super().__init__()
|
|
self.model_cfg = model_cfg
|
|
norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
|
|
self.sparse_shape = grid_size[[1, 0]]
|
|
|
|
block = post_act_block
|
|
dense_block = post_act_block_dense
|
|
|
|
self.conv1 = spconv.SparseSequential(
|
|
block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'),
|
|
block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'),
|
|
)
|
|
|
|
self.conv2 = spconv.SparseSequential(
|
|
# [1600, 1408] <- [800, 704]
|
|
block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'),
|
|
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'),
|
|
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'),
|
|
)
|
|
|
|
self.conv3 = spconv.SparseSequential(
|
|
# [800, 704] <- [400, 352]
|
|
block(64, 128, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'),
|
|
block(128, 128, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'),
|
|
block(128, 128, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'),
|
|
)
|
|
|
|
self.conv4 = spconv.SparseSequential(
|
|
# [400, 352] <- [200, 176]
|
|
block(128, 256, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv4', conv_type='spconv'),
|
|
block(256, 256, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'),
|
|
block(256, 256, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'),
|
|
)
|
|
|
|
norm_fn = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.01)
|
|
self.conv5 = nn.Sequential(
|
|
# [200, 176] <- [100, 88]
|
|
dense_block(256, 256, 3, norm_fn=norm_fn, stride=2, padding=1),
|
|
dense_block(256, 256, 3, norm_fn=norm_fn, padding=1),
|
|
dense_block(256, 256, 3, norm_fn=norm_fn, padding=1),
|
|
)
|
|
|
|
self.num_point_features = 256
|
|
self.backbone_channels = {
|
|
'x_conv1': 32,
|
|
'x_conv2': 64,
|
|
'x_conv3': 128,
|
|
'x_conv4': 256,
|
|
'x_conv5': 256
|
|
}
|
|
|
|
|
|
def forward(self, batch_dict):
|
|
pillar_features, pillar_coords = batch_dict['pillar_features'], batch_dict['pillar_coords']
|
|
batch_size = batch_dict['batch_size']
|
|
input_sp_tensor = spconv.SparseConvTensor(
|
|
features=pillar_features,
|
|
indices=pillar_coords.int(),
|
|
spatial_shape=self.sparse_shape,
|
|
batch_size=batch_size
|
|
)
|
|
|
|
x_conv1 = self.conv1(input_sp_tensor)
|
|
x_conv2 = self.conv2(x_conv1)
|
|
x_conv3 = self.conv3(x_conv2)
|
|
x_conv4 = self.conv4(x_conv3)
|
|
x_conv4 = x_conv4.dense()
|
|
x_conv5 = self.conv5(x_conv4)
|
|
|
|
batch_dict.update({
|
|
'multi_scale_2d_features': {
|
|
'x_conv1': x_conv1,
|
|
'x_conv2': x_conv2,
|
|
'x_conv3': x_conv3,
|
|
'x_conv4': x_conv4,
|
|
'x_conv5': x_conv5,
|
|
}
|
|
})
|
|
batch_dict.update({
|
|
'multi_scale_2d_strides': {
|
|
'x_conv1': 1,
|
|
'x_conv2': 2,
|
|
'x_conv3': 4,
|
|
'x_conv4': 8,
|
|
'x_conv5': 16,
|
|
}
|
|
})
|
|
|
|
return batch_dict
|
|
|
|
|
|
class PillarRes18BackBone8x(nn.Module):
|
|
def __init__(self, model_cfg, input_channels, grid_size, **kwargs):
|
|
super().__init__()
|
|
self.model_cfg = model_cfg
|
|
norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
|
|
self.sparse_shape = grid_size[[1, 0]]
|
|
|
|
block = post_act_block
|
|
dense_block = post_act_block_dense
|
|
|
|
self.conv1 = spconv.SparseSequential(
|
|
SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'),
|
|
SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'),
|
|
)
|
|
|
|
self.conv2 = spconv.SparseSequential(
|
|
# [1600, 1408] <- [800, 704]
|
|
block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'),
|
|
SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'),
|
|
SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'),
|
|
)
|
|
|
|
self.conv3 = spconv.SparseSequential(
|
|
# [800, 704] <- [400, 352]
|
|
block(64, 128, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'),
|
|
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
|
|
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
|
|
)
|
|
|
|
self.conv4 = spconv.SparseSequential(
|
|
# [400, 352] <- [200, 176]
|
|
block(128, 256, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv4', conv_type='spconv'),
|
|
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'),
|
|
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'),
|
|
)
|
|
|
|
norm_fn = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.01)
|
|
self.conv5 = nn.Sequential(
|
|
# [200, 176] <- [100, 88]
|
|
dense_block(256, 256, 3, norm_fn=norm_fn, stride=2, padding=1),
|
|
BasicBlock(256, 256, norm_fn=norm_fn),
|
|
BasicBlock(256, 256, norm_fn=norm_fn),
|
|
)
|
|
|
|
self.num_point_features = 256
|
|
self.backbone_channels = {
|
|
'x_conv1': 32,
|
|
'x_conv2': 64,
|
|
'x_conv3': 128,
|
|
'x_conv4': 256,
|
|
'x_conv5': 256
|
|
}
|
|
|
|
def forward(self, batch_dict):
|
|
pillar_features, pillar_coords = batch_dict['pillar_features'], batch_dict['pillar_coords']
|
|
batch_size = batch_dict['batch_size']
|
|
input_sp_tensor = spconv.SparseConvTensor(
|
|
features=pillar_features,
|
|
indices=pillar_coords.int(),
|
|
spatial_shape=self.sparse_shape,
|
|
batch_size=batch_size
|
|
)
|
|
|
|
x_conv1 = self.conv1(input_sp_tensor)
|
|
x_conv2 = self.conv2(x_conv1)
|
|
x_conv3 = self.conv3(x_conv2)
|
|
x_conv4 = self.conv4(x_conv3)
|
|
x_conv4 = x_conv4.dense()
|
|
x_conv5 = self.conv5(x_conv4)
|
|
|
|
# batch_dict.update({
|
|
# 'encoded_spconv_tensor': out,
|
|
# 'encoded_spconv_tensor_stride': 8
|
|
# })
|
|
batch_dict.update({
|
|
'multi_scale_2d_features': {
|
|
'x_conv1': x_conv1,
|
|
'x_conv2': x_conv2,
|
|
'x_conv3': x_conv3,
|
|
'x_conv4': x_conv4,
|
|
'x_conv5': x_conv5,
|
|
}
|
|
})
|
|
batch_dict.update({
|
|
'multi_scale_2d_strides': {
|
|
'x_conv1': 1,
|
|
'x_conv2': 2,
|
|
'x_conv3': 4,
|
|
'x_conv4': 8,
|
|
'x_conv5': 16,
|
|
}
|
|
})
|
|
|
|
return batch_dict
|