Files
OpenPCDet/pcdet/datasets/nuscenes/nuscenes_dataset.py
2025-09-21 20:18:32 +08:00

435 lines
18 KiB
Python

import copy
import pickle
from pathlib import Path
import numpy as np
from tqdm import tqdm
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
from ...utils import common_utils
from ..dataset import DatasetTemplate
from pyquaternion import Quaternion
from PIL import Image
class NuScenesDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
root_path = (root_path if root_path is not None else Path(dataset_cfg.DATA_PATH)) / dataset_cfg.VERSION
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.infos = []
self.camera_config = self.dataset_cfg.get('CAMERA_CONFIG', None)
if self.camera_config is not None:
self.use_camera = self.camera_config.get('USE_CAMERA', True)
self.camera_image_config = self.camera_config.IMAGE
else:
self.use_camera = False
self.include_nuscenes_data(self.mode)
if self.training and self.dataset_cfg.get('BALANCED_RESAMPLING', False):
self.infos = self.balanced_infos_resampling(self.infos)
def include_nuscenes_data(self, mode):
self.logger.info('Loading NuScenes dataset')
nuscenes_infos = []
for info_path in self.dataset_cfg.INFO_PATH[mode]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
nuscenes_infos.extend(infos)
self.infos.extend(nuscenes_infos)
self.logger.info('Total samples for NuScenes dataset: %d' % (len(nuscenes_infos)))
def balanced_infos_resampling(self, infos):
"""
Class-balanced sampling of nuScenes dataset from https://arxiv.org/abs/1908.09492
"""
if self.class_names is None:
return infos
cls_infos = {name: [] for name in self.class_names}
for info in infos:
for name in set(info['gt_names']):
if name in self.class_names:
cls_infos[name].append(info)
duplicated_samples = sum([len(v) for _, v in cls_infos.items()])
cls_dist = {k: len(v) / duplicated_samples for k, v in cls_infos.items()}
sampled_infos = []
frac = 1.0 / len(self.class_names)
ratios = [frac / v for v in cls_dist.values()]
for cur_cls_infos, ratio in zip(list(cls_infos.values()), ratios):
sampled_infos += np.random.choice(
cur_cls_infos, int(len(cur_cls_infos) * ratio)
).tolist()
self.logger.info('Total samples after balanced resampling: %s' % (len(sampled_infos)))
cls_infos_new = {name: [] for name in self.class_names}
for info in sampled_infos:
for name in set(info['gt_names']):
if name in self.class_names:
cls_infos_new[name].append(info)
cls_dist_new = {k: len(v) / len(sampled_infos) for k, v in cls_infos_new.items()}
return sampled_infos
def get_sweep(self, sweep_info):
def remove_ego_points(points, center_radius=1.0):
mask = ~((np.abs(points[:, 0]) < center_radius) & (np.abs(points[:, 1]) < center_radius))
return points[mask]
lidar_path = self.root_path / sweep_info['lidar_path']
points_sweep = np.fromfile(str(lidar_path), dtype=np.float32, count=-1).reshape([-1, 5])[:, :4]
points_sweep = remove_ego_points(points_sweep).T
if sweep_info['transform_matrix'] is not None:
num_points = points_sweep.shape[1]
points_sweep[:3, :] = sweep_info['transform_matrix'].dot(
np.vstack((points_sweep[:3, :], np.ones(num_points))))[:3, :]
cur_times = sweep_info['time_lag'] * np.ones((1, points_sweep.shape[1]))
return points_sweep.T, cur_times.T
def get_lidar_with_sweeps(self, index, max_sweeps=1):
info = self.infos[index]
lidar_path = self.root_path / info['lidar_path']
points = np.fromfile(str(lidar_path), dtype=np.float32, count=-1).reshape([-1, 5])[:, :4]
sweep_points_list = [points]
sweep_times_list = [np.zeros((points.shape[0], 1))]
for k in np.random.choice(len(info['sweeps']), max_sweeps - 1, replace=False):
points_sweep, times_sweep = self.get_sweep(info['sweeps'][k])
sweep_points_list.append(points_sweep)
sweep_times_list.append(times_sweep)
points = np.concatenate(sweep_points_list, axis=0)
times = np.concatenate(sweep_times_list, axis=0).astype(points.dtype)
points = np.concatenate((points, times), axis=1)
return points
def crop_image(self, input_dict):
W, H = input_dict["ori_shape"]
imgs = input_dict["camera_imgs"]
img_process_infos = []
crop_images = []
for img in imgs:
if self.training == True:
fH, fW = self.camera_image_config.FINAL_DIM
resize_lim = self.camera_image_config.RESIZE_LIM_TRAIN
resize = np.random.uniform(*resize_lim)
resize_dims = (int(W * resize), int(H * resize))
newW, newH = resize_dims
crop_h = newH - fH
crop_w = int(np.random.uniform(0, max(0, newW - fW)))
crop = (crop_w, crop_h, crop_w + fW, crop_h + fH)
else:
fH, fW = self.camera_image_config.FINAL_DIM
resize_lim = self.camera_image_config.RESIZE_LIM_TEST
resize = np.mean(resize_lim)
resize_dims = (int(W * resize), int(H * resize))
newW, newH = resize_dims
crop_h = newH - fH
crop_w = int(max(0, newW - fW) / 2)
crop = (crop_w, crop_h, crop_w + fW, crop_h + fH)
# reisze and crop image
img = img.resize(resize_dims)
img = img.crop(crop)
crop_images.append(img)
img_process_infos.append([resize, crop, False, 0])
input_dict['img_process_infos'] = img_process_infos
input_dict['camera_imgs'] = crop_images
return input_dict
def load_camera_info(self, input_dict, info):
input_dict["image_paths"] = []
input_dict["lidar2camera"] = []
input_dict["lidar2image"] = []
input_dict["camera2ego"] = []
input_dict["camera_intrinsics"] = []
input_dict["camera2lidar"] = []
for _, camera_info in info["cams"].items():
input_dict["image_paths"].append(camera_info["data_path"])
# lidar to camera transform
lidar2camera_r = np.linalg.inv(camera_info["sensor2lidar_rotation"])
lidar2camera_t = (
camera_info["sensor2lidar_translation"] @ lidar2camera_r.T
)
lidar2camera_rt = np.eye(4).astype(np.float32)
lidar2camera_rt[:3, :3] = lidar2camera_r.T
lidar2camera_rt[3, :3] = -lidar2camera_t
input_dict["lidar2camera"].append(lidar2camera_rt.T)
# camera intrinsics
camera_intrinsics = np.eye(4).astype(np.float32)
camera_intrinsics[:3, :3] = camera_info["camera_intrinsics"]
input_dict["camera_intrinsics"].append(camera_intrinsics)
# lidar to image transform
lidar2image = camera_intrinsics @ lidar2camera_rt.T
input_dict["lidar2image"].append(lidar2image)
# camera to ego transform
camera2ego = np.eye(4).astype(np.float32)
camera2ego[:3, :3] = Quaternion(
camera_info["sensor2ego_rotation"]
).rotation_matrix
camera2ego[:3, 3] = camera_info["sensor2ego_translation"]
input_dict["camera2ego"].append(camera2ego)
# camera to lidar transform
camera2lidar = np.eye(4).astype(np.float32)
camera2lidar[:3, :3] = camera_info["sensor2lidar_rotation"]
camera2lidar[:3, 3] = camera_info["sensor2lidar_translation"]
input_dict["camera2lidar"].append(camera2lidar)
# read image
filename = input_dict["image_paths"]
images = []
for name in filename:
images.append(Image.open(str(self.root_path / name)))
input_dict["camera_imgs"] = images
input_dict["ori_shape"] = images[0].size
# resize and crop image
input_dict = self.crop_image(input_dict)
return input_dict
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.infos) * self.total_epochs
return len(self.infos)
def __getitem__(self, index):
if self._merge_all_iters_to_one_epoch:
index = index % len(self.infos)
info = copy.deepcopy(self.infos[index])
points = self.get_lidar_with_sweeps(index, max_sweeps=self.dataset_cfg.MAX_SWEEPS)
input_dict = {
'points': points,
'frame_id': Path(info['lidar_path']).stem,
'metadata': {'token': info['token']}
}
if 'gt_boxes' in info:
if self.dataset_cfg.get('FILTER_MIN_POINTS_IN_GT', False):
mask = (info['num_lidar_pts'] > self.dataset_cfg.FILTER_MIN_POINTS_IN_GT - 1)
else:
mask = None
input_dict.update({
'gt_names': info['gt_names'] if mask is None else info['gt_names'][mask],
'gt_boxes': info['gt_boxes'] if mask is None else info['gt_boxes'][mask]
})
if self.use_camera:
input_dict = self.load_camera_info(input_dict, info)
data_dict = self.prepare_data(data_dict=input_dict)
if self.dataset_cfg.get('SET_NAN_VELOCITY_TO_ZEROS', False) and 'gt_boxes' in info:
gt_boxes = data_dict['gt_boxes']
gt_boxes[np.isnan(gt_boxes)] = 0
data_dict['gt_boxes'] = gt_boxes
if not self.dataset_cfg.PRED_VELOCITY and 'gt_boxes' in data_dict:
data_dict['gt_boxes'] = data_dict['gt_boxes'][:, [0, 1, 2, 3, 4, 5, 6, -1]]
return data_dict
def evaluation(self, det_annos, class_names, **kwargs):
import json
from nuscenes.nuscenes import NuScenes
from . import nuscenes_utils
nusc = NuScenes(version=self.dataset_cfg.VERSION, dataroot=str(self.root_path), verbose=True)
nusc_annos = nuscenes_utils.transform_det_annos_to_nusc_annos(det_annos, nusc)
nusc_annos['meta'] = {
'use_camera': False,
'use_lidar': True,
'use_radar': False,
'use_map': False,
'use_external': False,
}
output_path = Path(kwargs['output_path'])
output_path.mkdir(exist_ok=True, parents=True)
res_path = str(output_path / 'results_nusc.json')
with open(res_path, 'w') as f:
json.dump(nusc_annos, f)
self.logger.info(f'The predictions of NuScenes have been saved to {res_path}')
if self.dataset_cfg.VERSION == 'v1.0-test':
return 'No ground-truth annotations for evaluation', {}
from nuscenes.eval.detection.config import config_factory
from nuscenes.eval.detection.evaluate import NuScenesEval
eval_set_map = {
'v1.0-mini': 'mini_val',
'v1.0-trainval': 'val',
'v1.0-test': 'test'
}
try:
eval_version = 'detection_cvpr_2019'
eval_config = config_factory(eval_version)
except:
eval_version = 'cvpr_2019'
eval_config = config_factory(eval_version)
nusc_eval = NuScenesEval(
nusc,
config=eval_config,
result_path=res_path,
eval_set=eval_set_map[self.dataset_cfg.VERSION],
output_dir=str(output_path),
verbose=True,
)
metrics_summary = nusc_eval.main(plot_examples=0, render_curves=False)
with open(output_path / 'metrics_summary.json', 'r') as f:
metrics = json.load(f)
result_str, result_dict = nuscenes_utils.format_nuscene_results(metrics, self.class_names, version=eval_version)
return result_str, result_dict
def create_groundtruth_database(self, used_classes=None, max_sweeps=10):
import torch
database_save_path = self.root_path / f'gt_database_{max_sweeps}sweeps_withvelo'
db_info_save_path = self.root_path / f'nuscenes_dbinfos_{max_sweeps}sweeps_withvelo.pkl'
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
for idx in tqdm(range(len(self.infos))):
sample_idx = idx
info = self.infos[idx]
points = self.get_lidar_with_sweeps(idx, max_sweeps=max_sweeps)
gt_boxes = info['gt_boxes']
gt_names = info['gt_names']
box_idxs_of_pts = roiaware_pool3d_utils.points_in_boxes_gpu(
torch.from_numpy(points[:, 0:3]).unsqueeze(dim=0).float().cuda(),
torch.from_numpy(gt_boxes[:, 0:7]).unsqueeze(dim=0).float().cuda()
).long().squeeze(dim=0).cpu().numpy()
for i in range(gt_boxes.shape[0]):
filename = '%s_%s_%d.bin' % (sample_idx, gt_names[i], i)
filepath = database_save_path / filename
gt_points = points[box_idxs_of_pts == i]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or gt_names[i] in used_classes:
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': gt_names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
if gt_names[i] in all_db_infos:
all_db_infos[gt_names[i]].append(db_info)
else:
all_db_infos[gt_names[i]] = [db_info]
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
def create_nuscenes_info(version, data_path, save_path, max_sweeps=10, with_cam=False):
from nuscenes.nuscenes import NuScenes
from nuscenes.utils import splits
from . import nuscenes_utils
data_path = data_path / version
save_path = save_path / version
assert version in ['v1.0-trainval', 'v1.0-test', 'v1.0-mini']
if version == 'v1.0-trainval':
train_scenes = splits.train
val_scenes = splits.val
elif version == 'v1.0-test':
train_scenes = splits.test
val_scenes = []
elif version == 'v1.0-mini':
train_scenes = splits.mini_train
val_scenes = splits.mini_val
else:
raise NotImplementedError
nusc = NuScenes(version=version, dataroot=data_path, verbose=True)
available_scenes = nuscenes_utils.get_available_scenes(nusc)
available_scene_names = [s['name'] for s in available_scenes]
train_scenes = list(filter(lambda x: x in available_scene_names, train_scenes))
val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
train_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in train_scenes])
val_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in val_scenes])
print('%s: train scene(%d), val scene(%d)' % (version, len(train_scenes), len(val_scenes)))
train_nusc_infos, val_nusc_infos = nuscenes_utils.fill_trainval_infos(
data_path=data_path, nusc=nusc, train_scenes=train_scenes, val_scenes=val_scenes,
test='test' in version, max_sweeps=max_sweeps, with_cam=with_cam
)
if version == 'v1.0-test':
print('test sample: %d' % len(train_nusc_infos))
with open(save_path / f'nuscenes_infos_{max_sweeps}sweeps_test.pkl', 'wb') as f:
pickle.dump(train_nusc_infos, f)
else:
print('train sample: %d, val sample: %d' % (len(train_nusc_infos), len(val_nusc_infos)))
with open(save_path / f'nuscenes_infos_{max_sweeps}sweeps_train.pkl', 'wb') as f:
pickle.dump(train_nusc_infos, f)
with open(save_path / f'nuscenes_infos_{max_sweeps}sweeps_val.pkl', 'wb') as f:
pickle.dump(val_nusc_infos, f)
if __name__ == '__main__':
import yaml
import argparse
from pathlib import Path
from easydict import EasyDict
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset')
parser.add_argument('--func', type=str, default='create_nuscenes_infos', help='')
parser.add_argument('--version', type=str, default='v1.0-trainval', help='')
parser.add_argument('--with_cam', action='store_true', default=False, help='use camera or not')
args = parser.parse_args()
if args.func == 'create_nuscenes_infos':
dataset_cfg = EasyDict(yaml.safe_load(open(args.cfg_file)))
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
dataset_cfg.VERSION = args.version
create_nuscenes_info(
version=dataset_cfg.VERSION,
data_path=ROOT_DIR / 'data' / 'nuscenes',
save_path=ROOT_DIR / 'data' / 'nuscenes',
max_sweeps=dataset_cfg.MAX_SWEEPS,
with_cam=args.with_cam
)
nuscenes_dataset = NuScenesDataset(
dataset_cfg=dataset_cfg, class_names=None,
root_path=ROOT_DIR / 'data' / 'nuscenes',
logger=common_utils.create_logger(), training=True
)
nuscenes_dataset.create_groundtruth_database(max_sweeps=dataset_cfg.MAX_SWEEPS)