import torch import torch.nn as nn from torch.autograd import Function from ...utils import box_utils from . import roipoint_pool3d_cuda class RoIPointPool3d(nn.Module): def __init__(self, num_sampled_points=512, pool_extra_width=1.0): super().__init__() self.num_sampled_points = num_sampled_points self.pool_extra_width = pool_extra_width def forward(self, points, point_features, boxes3d): """ Args: points: (B, N, 3) point_features: (B, N, C) boxes3d: (B, M, 7), [x, y, z, dx, dy, dz, heading] Returns: pooled_features: (B, M, 512, 3 + C) pooled_empty_flag: (B, M) """ return RoIPointPool3dFunction.apply( points, point_features, boxes3d, self.pool_extra_width, self.num_sampled_points ) class RoIPointPool3dFunction(Function): @staticmethod def forward(ctx, points, point_features, boxes3d, pool_extra_width, num_sampled_points=512): """ Args: ctx: points: (B, N, 3) point_features: (B, N, C) boxes3d: (B, num_boxes, 7), [x, y, z, dx, dy, dz, heading] pool_extra_width: num_sampled_points: Returns: pooled_features: (B, num_boxes, 512, 3 + C) pooled_empty_flag: (B, num_boxes) """ assert points.shape.__len__() == 3 and points.shape[2] == 3 batch_size, boxes_num, feature_len = points.shape[0], boxes3d.shape[1], point_features.shape[2] pooled_boxes3d = box_utils.enlarge_box3d(boxes3d.view(-1, 7), pool_extra_width).view(batch_size, -1, 7) pooled_features = point_features.new_zeros((batch_size, boxes_num, num_sampled_points, 3 + feature_len)) pooled_empty_flag = point_features.new_zeros((batch_size, boxes_num)).int() roipoint_pool3d_cuda.forward( points.contiguous(), pooled_boxes3d.contiguous(), point_features.contiguous(), pooled_features, pooled_empty_flag ) return pooled_features, pooled_empty_flag @staticmethod def backward(ctx, grad_out): raise NotImplementedError if __name__ == '__main__': pass