import numpy as np class PointFeatureEncoder(object): def __init__(self, config, point_cloud_range=None): super().__init__() self.point_encoding_config = config assert list(self.point_encoding_config.src_feature_list[0:3]) == ['x', 'y', 'z'] self.used_feature_list = self.point_encoding_config.used_feature_list self.src_feature_list = self.point_encoding_config.src_feature_list self.point_cloud_range = point_cloud_range @property def num_point_features(self): return getattr(self, self.point_encoding_config.encoding_type)(points=None) def forward(self, data_dict): """ Args: data_dict: points: (N, 3 + C_in) ... Returns: data_dict: points: (N, 3 + C_out), use_lead_xyz: whether to use xyz as point-wise features ... """ data_dict['points'], use_lead_xyz = getattr(self, self.point_encoding_config.encoding_type)( data_dict['points'] ) data_dict['use_lead_xyz'] = use_lead_xyz if self.point_encoding_config.get('filter_sweeps', False) and 'timestamp' in self.src_feature_list: max_sweeps = self.point_encoding_config.max_sweeps idx = self.src_feature_list.index('timestamp') dt = np.round(data_dict['points'][:, idx], 2) max_dt = sorted(np.unique(dt))[min(len(np.unique(dt))-1, max_sweeps-1)] data_dict['points'] = data_dict['points'][dt <= max_dt] return data_dict def absolute_coordinates_encoding(self, points=None): if points is None: num_output_features = len(self.used_feature_list) return num_output_features assert points.shape[-1] == len(self.src_feature_list) point_feature_list = [points[:, 0:3]] for x in self.used_feature_list: if x in ['x', 'y', 'z']: continue idx = self.src_feature_list.index(x) point_feature_list.append(points[:, idx:idx+1]) point_features = np.concatenate(point_feature_list, axis=1) return point_features, True