/* 3D IoU Calculation and Rotated NMS(modified from 2D NMS written by others) Written by Shaoshuai Shi All Rights Reserved 2019-2020. */ #include #include #include #include #include #include "iou3d_nms.h" #define CHECK_CUDA(x) do { \ if (!x.type().is_cuda()) { \ fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ exit(-1); \ } \ } while (0) #define CHECK_CONTIGUOUS(x) do { \ if (!x.is_contiguous()) { \ fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ exit(-1); \ } \ } while (0) #define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) #define CHECK_ERROR(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) { if (code != cudaSuccess) { fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line); if (abort) exit(code); } } const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8; void boxesalignedoverlapLauncher(const int num_box, const float *boxes_a, const float *boxes_b, float *ans_overlap); void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap); void PairedBoxesOverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap); void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou); void nmsLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh); void nmsNormalLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh); int boxes_aligned_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){ // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] // params ans_overlap: (N, 1) CHECK_INPUT(boxes_a); CHECK_INPUT(boxes_b); CHECK_INPUT(ans_overlap); int num_box = boxes_a.size(0); int num_b = boxes_b.size(0); assert(num_box == num_b); const float * boxes_a_data = boxes_a.data(); const float * boxes_b_data = boxes_b.data(); float * ans_overlap_data = ans_overlap.data(); boxesalignedoverlapLauncher(num_box, boxes_a_data, boxes_b_data, ans_overlap_data); return 1; } int boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){ // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] // params ans_overlap: (N, M) CHECK_INPUT(boxes_a); CHECK_INPUT(boxes_b); CHECK_INPUT(ans_overlap); int num_a = boxes_a.size(0); int num_b = boxes_b.size(0); const float * boxes_a_data = boxes_a.data(); const float * boxes_b_data = boxes_b.data(); float * ans_overlap_data = ans_overlap.data(); boxesoverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data); return 1; } int paired_boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){ // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] // params ans_overlap: (N, 1) CHECK_INPUT(boxes_a); CHECK_INPUT(boxes_b); CHECK_INPUT(ans_overlap); int num_a = boxes_a.size(0); int num_b = boxes_b.size(0); assert(num_a == num_b); const float * boxes_a_data = boxes_a.data(); const float * boxes_b_data = boxes_b.data(); float * ans_overlap_data = ans_overlap.data(); PairedBoxesOverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data); return 1; } int boxes_iou_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_iou){ // params boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] // params boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] // params ans_overlap: (N, M) CHECK_INPUT(boxes_a); CHECK_INPUT(boxes_b); CHECK_INPUT(ans_iou); int num_a = boxes_a.size(0); int num_b = boxes_b.size(0); const float * boxes_a_data = boxes_a.data(); const float * boxes_b_data = boxes_b.data(); float * ans_iou_data = ans_iou.data(); boxesioubevLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_iou_data); return 1; } int nms_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){ // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading] // params keep: (N) CHECK_INPUT(boxes); CHECK_CONTIGUOUS(keep); int boxes_num = boxes.size(0); const float * boxes_data = boxes.data(); long * keep_data = keep.data(); const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS); unsigned long long *mask_data = NULL; CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long))); nmsLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh); // unsigned long long mask_cpu[boxes_num * col_blocks]; // unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks]; std::vector mask_cpu(boxes_num * col_blocks); // printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks); CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long), cudaMemcpyDeviceToHost)); cudaFree(mask_data); unsigned long long remv_cpu[col_blocks]; memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long)); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++){ int nblock = i / THREADS_PER_BLOCK_NMS; int inblock = i % THREADS_PER_BLOCK_NMS; if (!(remv_cpu[nblock] & (1ULL << inblock))){ keep_data[num_to_keep++] = i; unsigned long long *p = &mask_cpu[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++){ remv_cpu[j] |= p[j]; } } } if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" ); return num_to_keep; } int nms_normal_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){ // params boxes: (N, 7) [x, y, z, dx, dy, dz, heading] // params keep: (N) CHECK_INPUT(boxes); CHECK_CONTIGUOUS(keep); int boxes_num = boxes.size(0); const float * boxes_data = boxes.data(); long * keep_data = keep.data(); const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS); unsigned long long *mask_data = NULL; CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long))); nmsNormalLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh); // unsigned long long mask_cpu[boxes_num * col_blocks]; // unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks]; std::vector mask_cpu(boxes_num * col_blocks); // printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks); CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long), cudaMemcpyDeviceToHost)); cudaFree(mask_data); unsigned long long remv_cpu[col_blocks]; memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long)); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++){ int nblock = i / THREADS_PER_BLOCK_NMS; int inblock = i % THREADS_PER_BLOCK_NMS; if (!(remv_cpu[nblock] & (1ULL << inblock))){ keep_data[num_to_keep++] = i; unsigned long long *p = &mask_cpu[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++){ remv_cpu[j] |= p[j]; } } } if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" ); return num_to_keep; }