from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from .roi_head_template import RoIHeadTemplate from ...utils import common_utils, loss_utils class SECONDHead(RoIHeadTemplate): def __init__(self, input_channels, model_cfg, num_class=1, **kwargs): super().__init__(num_class=num_class, model_cfg=model_cfg) self.model_cfg = model_cfg GRID_SIZE = self.model_cfg.ROI_GRID_POOL.GRID_SIZE pre_channel = self.model_cfg.ROI_GRID_POOL.IN_CHANNEL * GRID_SIZE * GRID_SIZE shared_fc_list = [] for k in range(0, self.model_cfg.SHARED_FC.__len__()): shared_fc_list.extend([ nn.Conv1d(pre_channel, self.model_cfg.SHARED_FC[k], kernel_size=1, bias=False), nn.BatchNorm1d(self.model_cfg.SHARED_FC[k]), nn.ReLU() ]) pre_channel = self.model_cfg.SHARED_FC[k] if k != self.model_cfg.SHARED_FC.__len__() - 1 and self.model_cfg.DP_RATIO > 0: shared_fc_list.append(nn.Dropout(self.model_cfg.DP_RATIO)) self.shared_fc_layer = nn.Sequential(*shared_fc_list) self.iou_layers = self.make_fc_layers( input_channels=pre_channel, output_channels=1, fc_list=self.model_cfg.IOU_FC ) self.init_weights(weight_init='xavier') if torch.__version__ >= '1.3': self.affine_grid = partial(F.affine_grid, align_corners=True) self.grid_sample = partial(F.grid_sample, align_corners=True) else: self.affine_grid = F.affine_grid self.grid_sample = F.grid_sample def init_weights(self, weight_init='xavier'): if weight_init == 'kaiming': init_func = nn.init.kaiming_normal_ elif weight_init == 'xavier': init_func = nn.init.xavier_normal_ elif weight_init == 'normal': init_func = nn.init.normal_ else: raise NotImplementedError for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d): if weight_init == 'normal': init_func(m.weight, mean=0, std=0.001) else: init_func(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def roi_grid_pool(self, batch_dict): """ Args: batch_dict: batch_size: rois: (B, num_rois, 7 + C) spatial_features_2d: (B, C, H, W) Returns: """ batch_size = batch_dict['batch_size'] rois = batch_dict['rois'].detach() spatial_features_2d = batch_dict['spatial_features_2d'].detach() height, width = spatial_features_2d.size(2), spatial_features_2d.size(3) dataset_cfg = batch_dict['dataset_cfg'] min_x = dataset_cfg.POINT_CLOUD_RANGE[0] min_y = dataset_cfg.POINT_CLOUD_RANGE[1] voxel_size_x = dataset_cfg.DATA_PROCESSOR[-1].VOXEL_SIZE[0] voxel_size_y = dataset_cfg.DATA_PROCESSOR[-1].VOXEL_SIZE[1] down_sample_ratio = self.model_cfg.ROI_GRID_POOL.DOWNSAMPLE_RATIO pooled_features_list = [] torch.backends.cudnn.enabled = False for b_id in range(batch_size): # Map global boxes coordinates to feature map coordinates x1 = (rois[b_id, :, 0] - rois[b_id, :, 3] / 2 - min_x) / (voxel_size_x * down_sample_ratio) x2 = (rois[b_id, :, 0] + rois[b_id, :, 3] / 2 - min_x) / (voxel_size_x * down_sample_ratio) y1 = (rois[b_id, :, 1] - rois[b_id, :, 4] / 2 - min_y) / (voxel_size_y * down_sample_ratio) y2 = (rois[b_id, :, 1] + rois[b_id, :, 4] / 2 - min_y) / (voxel_size_y * down_sample_ratio) angle, _ = common_utils.check_numpy_to_torch(rois[b_id, :, 6]) cosa = torch.cos(angle) sina = torch.sin(angle) theta = torch.stack(( (x2 - x1) / (width - 1) * cosa, (x2 - x1) / (width - 1) * (-sina), (x1 + x2 - width + 1) / (width - 1), (y2 - y1) / (height - 1) * sina, (y2 - y1) / (height - 1) * cosa, (y1 + y2 - height + 1) / (height - 1) ), dim=1).view(-1, 2, 3).float() grid_size = self.model_cfg.ROI_GRID_POOL.GRID_SIZE grid = self.affine_grid( theta, torch.Size((rois.size(1), spatial_features_2d.size(1), grid_size, grid_size)) ) pooled_features = self.grid_sample( spatial_features_2d[b_id].unsqueeze(0).expand(rois.size(1), spatial_features_2d.size(1), height, width), grid ) pooled_features_list.append(pooled_features) torch.backends.cudnn.enabled = True pooled_features = torch.cat(pooled_features_list, dim=0) return pooled_features def forward(self, batch_dict): """ :param input_data: input dict :return: """ targets_dict = self.proposal_layer( batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST'] ) if self.training: targets_dict = self.assign_targets(batch_dict) batch_dict['rois'] = targets_dict['rois'] batch_dict['roi_labels'] = targets_dict['roi_labels'] # RoI aware pooling pooled_features = self.roi_grid_pool(batch_dict) # (BxN, C, 7, 7) batch_size_rcnn = pooled_features.shape[0] shared_features = self.shared_fc_layer(pooled_features.view(batch_size_rcnn, -1, 1)) rcnn_iou = self.iou_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B*N, 1) if not self.training: batch_dict['batch_cls_preds'] = rcnn_iou.view(batch_dict['batch_size'], -1, rcnn_iou.shape[-1]) batch_dict['batch_box_preds'] = batch_dict['rois'] batch_dict['cls_preds_normalized'] = False else: targets_dict['rcnn_iou'] = rcnn_iou self.forward_ret_dict = targets_dict return batch_dict def get_loss(self, tb_dict=None): tb_dict = {} if tb_dict is None else tb_dict rcnn_loss = 0 rcnn_loss_cls, cls_tb_dict = self.get_box_iou_layer_loss(self.forward_ret_dict) rcnn_loss += rcnn_loss_cls tb_dict.update(cls_tb_dict) tb_dict['rcnn_loss'] = rcnn_loss.item() return rcnn_loss, tb_dict def get_box_iou_layer_loss(self, forward_ret_dict): loss_cfgs = self.model_cfg.LOSS_CONFIG rcnn_iou = forward_ret_dict['rcnn_iou'] rcnn_iou_labels = forward_ret_dict['rcnn_cls_labels'].view(-1) rcnn_iou_flat = rcnn_iou.view(-1) if loss_cfgs.IOU_LOSS == 'BinaryCrossEntropy': batch_loss_iou = nn.functional.binary_cross_entropy_with_logits( rcnn_iou_flat, rcnn_iou_labels.float(), reduction='none' ) elif loss_cfgs.IOU_LOSS == 'L2': batch_loss_iou = nn.functional.mse_loss(rcnn_iou_flat, rcnn_iou_labels, reduction='none') elif loss_cfgs.IOU_LOSS == 'smoothL1': diff = rcnn_iou_flat - rcnn_iou_labels batch_loss_iou = loss_utils.WeightedSmoothL1Loss.smooth_l1_loss(diff, 1.0 / 9.0) elif loss_cfgs.IOU_LOSS == 'focalbce': batch_loss_iou = loss_utils.sigmoid_focal_cls_loss(rcnn_iou_flat, rcnn_iou_labels) else: raise NotImplementedError iou_valid_mask = (rcnn_iou_labels >= 0).float() rcnn_loss_iou = (batch_loss_iou * iou_valid_mask).sum() / torch.clamp(iou_valid_mask.sum(), min=1.0) rcnn_loss_iou = rcnn_loss_iou * loss_cfgs.LOSS_WEIGHTS['rcnn_iou_weight'] tb_dict = {'rcnn_loss_iou': rcnn_loss_iou.item()} return rcnn_loss_iou, tb_dict