From f3a78dc505742e1b238afe45afed26e57ce4518c Mon Sep 17 00:00:00 2001 From: inter Date: Sun, 21 Sep 2025 20:19:14 +0800 Subject: [PATCH] Add File --- .../pointnet2_stack/src/interpolate.cpp | 107 ++++++++++++++++++ 1 file changed, 107 insertions(+) create mode 100644 pcdet/ops/pointnet2/pointnet2_stack/src/interpolate.cpp diff --git a/pcdet/ops/pointnet2/pointnet2_stack/src/interpolate.cpp b/pcdet/ops/pointnet2/pointnet2_stack/src/interpolate.cpp new file mode 100644 index 0000000..db9a41a --- /dev/null +++ b/pcdet/ops/pointnet2/pointnet2_stack/src/interpolate.cpp @@ -0,0 +1,107 @@ +/* +Stacked-batch-data version of point interpolation, modified from the original implementation of official PointNet++ codes. +Written by Shaoshuai Shi +All Rights Reserved 2019-2020. +*/ + + +#include +#include +#include +#include +#include +#include +#include +#include "interpolate_gpu.h" + +#define CHECK_CUDA(x) do { \ + if (!x.type().is_cuda()) { \ + fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ + exit(-1); \ + } \ +} while (0) +#define CHECK_CONTIGUOUS(x) do { \ + if (!x.is_contiguous()) { \ + fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ + exit(-1); \ + } \ +} while (0) +#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) + + +void three_nn_wrapper_stack(at::Tensor unknown_tensor, + at::Tensor unknown_batch_cnt_tensor, at::Tensor known_tensor, + at::Tensor known_batch_cnt_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor){ + // unknown: (N1 + N2 ..., 3) + // unknown_batch_cnt: (batch_size), [N1, N2, ...] + // known: (M1 + M2 ..., 3) + // known_batch_cnt: (batch_size), [M1, M2, ...] + // Return: + // dist: (N1 + N2 ..., 3) l2 distance to the three nearest neighbors + // idx: (N1 + N2 ..., 3) index of the three nearest neighbors + CHECK_INPUT(unknown_tensor); + CHECK_INPUT(unknown_batch_cnt_tensor); + CHECK_INPUT(known_tensor); + CHECK_INPUT(known_batch_cnt_tensor); + CHECK_INPUT(dist2_tensor); + CHECK_INPUT(idx_tensor); + + int batch_size = unknown_batch_cnt_tensor.size(0); + int N = unknown_tensor.size(0); + int M = known_tensor.size(0); + const float *unknown = unknown_tensor.data(); + const int *unknown_batch_cnt = unknown_batch_cnt_tensor.data(); + const float *known = known_tensor.data(); + const int *known_batch_cnt = known_batch_cnt_tensor.data(); + float *dist2 = dist2_tensor.data(); + int *idx = idx_tensor.data(); + + three_nn_kernel_launcher_stack(batch_size, N, M, unknown, unknown_batch_cnt, known, known_batch_cnt, dist2, idx); +} + + +void three_interpolate_wrapper_stack(at::Tensor features_tensor, + at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor) { + // features_tensor: (M1 + M2 ..., C) + // idx_tensor: [N1 + N2 ..., 3] + // weight_tensor: [N1 + N2 ..., 3] + // Return: + // out_tensor: (N1 + N2 ..., C) + CHECK_INPUT(features_tensor); + CHECK_INPUT(idx_tensor); + CHECK_INPUT(weight_tensor); + CHECK_INPUT(out_tensor); + + int N = out_tensor.size(0); + int channels = features_tensor.size(1); + const float *features = features_tensor.data(); + const float *weight = weight_tensor.data(); + const int *idx = idx_tensor.data(); + float *out = out_tensor.data(); + + three_interpolate_kernel_launcher_stack(N, channels, features, idx, weight, out); +} + + +void three_interpolate_grad_wrapper_stack(at::Tensor grad_out_tensor, at::Tensor idx_tensor, + at::Tensor weight_tensor, at::Tensor grad_features_tensor) { + // grad_out_tensor: (N1 + N2 ..., C) + // idx_tensor: [N1 + N2 ..., 3] + // weight_tensor: [N1 + N2 ..., 3] + // Return: + // grad_features_tensor: (M1 + M2 ..., C) + CHECK_INPUT(grad_out_tensor); + CHECK_INPUT(idx_tensor); + CHECK_INPUT(weight_tensor); + CHECK_INPUT(grad_features_tensor); + + int N = grad_out_tensor.size(0); + int channels = grad_out_tensor.size(1); + const float *grad_out = grad_out_tensor.data(); + const float *weight = weight_tensor.data(); + const int *idx = idx_tensor.data(); + float *grad_features = grad_features_tensor.data(); + + // printf("N=%d, channels=%d\n", N, channels); + three_interpolate_grad_kernel_launcher_stack(N, channels, grad_out, idx, weight, grad_features); +} \ No newline at end of file