Add File
This commit is contained in:
100
pcdet/ops/pointnet2/pointnet2_stack/voxel_query_utils.py
Normal file
100
pcdet/ops/pointnet2/pointnet2_stack/voxel_query_utils.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch.autograd import Function
|
||||
import torch.nn as nn
|
||||
from typing import List
|
||||
|
||||
from . import pointnet2_stack_cuda as pointnet2
|
||||
from . import pointnet2_utils
|
||||
|
||||
class VoxelQuery(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, max_range: int, radius: float, nsample: int, xyz: torch.Tensor, \
|
||||
new_xyz: torch.Tensor, new_coords: torch.Tensor, point_indices: torch.Tensor):
|
||||
"""
|
||||
Args:
|
||||
ctx:
|
||||
max_range: int, max range of voxels to be grouped
|
||||
nsample: int, maximum number of features in the balls
|
||||
new_coords: (M1 + M2, 4), [batch_id, z, y, x] cooridnates of keypoints
|
||||
new_xyz_batch_cnt: (batch_size), [M1, M2, ...]
|
||||
point_indices: (batch_size, Z, Y, X) 4-D tensor recording the point indices of voxels
|
||||
Returns:
|
||||
idx: (M1 + M2, nsample) tensor with the indicies of the features that form the query balls
|
||||
"""
|
||||
assert new_xyz.is_contiguous()
|
||||
assert xyz.is_contiguous()
|
||||
assert new_coords.is_contiguous()
|
||||
assert point_indices.is_contiguous()
|
||||
|
||||
M = new_coords.shape[0]
|
||||
B, Z, Y, X = point_indices.shape
|
||||
idx = torch.cuda.IntTensor(M, nsample).zero_()
|
||||
|
||||
z_range, y_range, x_range = max_range
|
||||
pointnet2.voxel_query_wrapper(M, Z, Y, X, nsample, radius, z_range, y_range, x_range, \
|
||||
new_xyz, xyz, new_coords, point_indices, idx)
|
||||
|
||||
empty_ball_mask = (idx[:, 0] == -1)
|
||||
idx[empty_ball_mask] = 0
|
||||
|
||||
return idx, empty_ball_mask
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, a=None):
|
||||
return None, None, None, None
|
||||
|
||||
voxel_query = VoxelQuery.apply
|
||||
|
||||
|
||||
class VoxelQueryAndGrouping(nn.Module):
|
||||
def __init__(self, max_range: int, radius: float, nsample: int):
|
||||
"""
|
||||
Args:
|
||||
radius: float, radius of ball
|
||||
nsample: int, maximum number of features to gather in the ball
|
||||
"""
|
||||
super().__init__()
|
||||
self.max_range, self.radius, self.nsample = max_range, radius, nsample
|
||||
|
||||
def forward(self, new_coords: torch.Tensor, xyz: torch.Tensor, xyz_batch_cnt: torch.Tensor,
|
||||
new_xyz: torch.Tensor, new_xyz_batch_cnt: torch.Tensor,
|
||||
features: torch.Tensor, voxel2point_indices: torch.Tensor):
|
||||
"""
|
||||
Args:
|
||||
new_coords: (M1 + M2 ..., 3) centers voxel indices of the ball query
|
||||
xyz: (N1 + N2 ..., 3) xyz coordinates of the features
|
||||
xyz_batch_cnt: (batch_size), [N1, N2, ...]
|
||||
new_xyz: (M1 + M2 ..., 3) centers of the ball query
|
||||
new_xyz_batch_cnt: (batch_size), [M1, M2, ...]
|
||||
features: (N1 + N2 ..., C) tensor of features to group
|
||||
voxel2point_indices: (B, Z, Y, X) tensor of points indices of voxels
|
||||
|
||||
Returns:
|
||||
new_features: (M1 + M2, C, nsample) tensor
|
||||
"""
|
||||
assert xyz.shape[0] == xyz_batch_cnt.sum(), 'xyz: %s, xyz_batch_cnt: %s' % (str(xyz.shape), str(new_xyz_batch_cnt))
|
||||
assert new_coords.shape[0] == new_xyz_batch_cnt.sum(), \
|
||||
'new_coords: %s, new_xyz_batch_cnt: %s' % (str(new_coords.shape), str(new_xyz_batch_cnt))
|
||||
batch_size = xyz_batch_cnt.shape[0]
|
||||
|
||||
# idx: (M1 + M2 ..., nsample), empty_ball_mask: (M1 + M2 ...)
|
||||
idx1, empty_ball_mask1 = voxel_query(self.max_range, self.radius, self.nsample, xyz, new_xyz, new_coords, voxel2point_indices)
|
||||
|
||||
idx1 = idx1.view(batch_size, -1, self.nsample)
|
||||
count = 0
|
||||
for bs_idx in range(batch_size):
|
||||
idx1[bs_idx] -= count
|
||||
count += xyz_batch_cnt[bs_idx]
|
||||
idx1 = idx1.view(-1, self.nsample)
|
||||
idx1[empty_ball_mask1] = 0
|
||||
|
||||
idx = idx1
|
||||
empty_ball_mask = empty_ball_mask1
|
||||
|
||||
grouped_xyz = pointnet2_utils.grouping_operation(xyz, xyz_batch_cnt, idx, new_xyz_batch_cnt)
|
||||
# grouped_features: (M1 + M2, C, nsample)
|
||||
grouped_features = pointnet2_utils.grouping_operation(features, xyz_batch_cnt, idx, new_xyz_batch_cnt)
|
||||
|
||||
return grouped_features, grouped_xyz, empty_ball_mask
|
||||
Reference in New Issue
Block a user