This commit is contained in:
2025-09-21 20:18:45 +08:00
parent b68915be8d
commit c4626703e7

View File

@@ -0,0 +1,101 @@
from .detector3d_template import Detector3DTemplate
from .. import backbones_image, view_transforms
from ..backbones_image import img_neck
from ..backbones_2d import fuser
class BevFusion(Detector3DTemplate):
def __init__(self, model_cfg, num_class, dataset):
super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset)
self.module_topology = [
'vfe', 'backbone_3d', 'map_to_bev_module', 'pfe',
'image_backbone','neck','vtransform','fuser',
'backbone_2d', 'dense_head', 'point_head', 'roi_head'
]
self.module_list = self.build_networks()
def build_neck(self,model_info_dict):
if self.model_cfg.get('NECK', None) is None:
return None, model_info_dict
neck_module = img_neck.__all__[self.model_cfg.NECK.NAME](
model_cfg=self.model_cfg.NECK
)
model_info_dict['module_list'].append(neck_module)
return neck_module, model_info_dict
def build_vtransform(self,model_info_dict):
if self.model_cfg.get('VTRANSFORM', None) is None:
return None, model_info_dict
vtransform_module = view_transforms.__all__[self.model_cfg.VTRANSFORM.NAME](
model_cfg=self.model_cfg.VTRANSFORM
)
model_info_dict['module_list'].append(vtransform_module)
return vtransform_module, model_info_dict
def build_image_backbone(self, model_info_dict):
if self.model_cfg.get('IMAGE_BACKBONE', None) is None:
return None, model_info_dict
image_backbone_module = backbones_image.__all__[self.model_cfg.IMAGE_BACKBONE.NAME](
model_cfg=self.model_cfg.IMAGE_BACKBONE
)
image_backbone_module.init_weights()
model_info_dict['module_list'].append(image_backbone_module)
return image_backbone_module, model_info_dict
def build_fuser(self, model_info_dict):
if self.model_cfg.get('FUSER', None) is None:
return None, model_info_dict
fuser_module = fuser.__all__[self.model_cfg.FUSER.NAME](
model_cfg=self.model_cfg.FUSER
)
model_info_dict['module_list'].append(fuser_module)
model_info_dict['num_bev_features'] = self.model_cfg.FUSER.OUT_CHANNEL
return fuser_module, model_info_dict
def forward(self, batch_dict):
for i,cur_module in enumerate(self.module_list):
batch_dict = cur_module(batch_dict)
if self.training:
loss, tb_dict, disp_dict = self.get_training_loss(batch_dict)
ret_dict = {
'loss': loss
}
return ret_dict, tb_dict, disp_dict
else:
pred_dicts, recall_dicts = self.post_processing(batch_dict)
return pred_dicts, recall_dicts
def get_training_loss(self,batch_dict):
disp_dict = {}
loss_trans, tb_dict = batch_dict['loss'],batch_dict['tb_dict']
tb_dict = {
'loss_trans': loss_trans.item(),
**tb_dict
}
loss = loss_trans
return loss, tb_dict, disp_dict
def post_processing(self, batch_dict):
post_process_cfg = self.model_cfg.POST_PROCESSING
batch_size = batch_dict['batch_size']
final_pred_dict = batch_dict['final_box_dicts']
recall_dict = {}
for index in range(batch_size):
pred_boxes = final_pred_dict[index]['pred_boxes']
recall_dict = self.generate_recall_record(
box_preds=pred_boxes,
recall_dict=recall_dict, batch_index=index, data_dict=batch_dict,
thresh_list=post_process_cfg.RECALL_THRESH_LIST
)
return final_pred_dict, recall_dict