This commit is contained in:
2025-09-21 20:18:28 +08:00
parent 610d5c5621
commit a1d3f45087

View File

@@ -0,0 +1,66 @@
import numpy as np
from ...utils import box_utils
def transform_annotations_to_kitti_format(annos, map_name_to_kitti=None, info_with_fakelidar=False):
"""
Args:
annos:
map_name_to_kitti: dict, map name to KITTI names (Car, Pedestrian, Cyclist)
info_with_fakelidar:
Returns:
"""
for anno in annos:
# For lyft and nuscenes, different anno key in info
if 'name' not in anno:
anno['name'] = anno['gt_names']
anno.pop('gt_names')
for k in range(anno['name'].shape[0]):
anno['name'][k] = map_name_to_kitti[anno['name'][k]]
anno['bbox'] = np.zeros((len(anno['name']), 4))
anno['bbox'][:, 2:4] = 50 # [0, 0, 50, 50]
anno['truncated'] = np.zeros(len(anno['name']))
anno['occluded'] = np.zeros(len(anno['name']))
if 'boxes_lidar' in anno:
gt_boxes_lidar = anno['boxes_lidar'].copy()
else:
gt_boxes_lidar = anno['gt_boxes_lidar'].copy()
if len(gt_boxes_lidar) > 0:
if info_with_fakelidar:
gt_boxes_lidar = box_utils.boxes3d_kitti_fakelidar_to_lidar(gt_boxes_lidar)
gt_boxes_lidar[:, 2] -= gt_boxes_lidar[:, 5] / 2
anno['location'] = np.zeros((gt_boxes_lidar.shape[0], 3))
anno['location'][:, 0] = -gt_boxes_lidar[:, 1] # x = -y_lidar
anno['location'][:, 1] = -gt_boxes_lidar[:, 2] # y = -z_lidar
anno['location'][:, 2] = gt_boxes_lidar[:, 0] # z = x_lidar
dxdydz = gt_boxes_lidar[:, 3:6]
anno['dimensions'] = dxdydz[:, [0, 2, 1]] # lwh ==> lhw
anno['rotation_y'] = -gt_boxes_lidar[:, 6] - np.pi / 2.0
anno['alpha'] = -np.arctan2(-gt_boxes_lidar[:, 1], gt_boxes_lidar[:, 0]) + anno['rotation_y']
else:
anno['location'] = anno['dimensions'] = np.zeros((0, 3))
anno['rotation_y'] = anno['alpha'] = np.zeros(0)
return annos
def calib_to_matricies(calib):
"""
Converts calibration object to transformation matricies
Args:
calib: calibration.Calibration, Calibration object
Returns
V2R: (4, 4), Lidar to rectified camera transformation matrix
P2: (3, 4), Camera projection matrix
"""
V2C = np.vstack((calib.V2C, np.array([0, 0, 0, 1], dtype=np.float32))) # (4, 4)
R0 = np.hstack((calib.R0, np.zeros((3, 1), dtype=np.float32))) # (3, 4)
R0 = np.vstack((R0, np.array([0, 0, 0, 1], dtype=np.float32))) # (4, 4)
V2R = R0 @ V2C
P2 = calib.P2
return V2R, P2