From 854e4c0b2ac3878925e670f94e9d5fd06f197ce3 Mon Sep 17 00:00:00 2001 From: inter Date: Sun, 21 Sep 2025 20:18:59 +0800 Subject: [PATCH] Add File --- .../backbones_3d/vfe/dynamic_voxel_vfe.py | 106 ++++++++++++++++++ 1 file changed, 106 insertions(+) create mode 100644 pcdet/models/backbones_3d/vfe/dynamic_voxel_vfe.py diff --git a/pcdet/models/backbones_3d/vfe/dynamic_voxel_vfe.py b/pcdet/models/backbones_3d/vfe/dynamic_voxel_vfe.py new file mode 100644 index 0000000..d878d49 --- /dev/null +++ b/pcdet/models/backbones_3d/vfe/dynamic_voxel_vfe.py @@ -0,0 +1,106 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +try: + import torch_scatter +except Exception as e: + # Incase someone doesn't want to use dynamic pillar vfe and hasn't installed torch_scatter + pass + +from .vfe_template import VFETemplate +from .dynamic_pillar_vfe import PFNLayerV2 + + +class DynamicVoxelVFE(VFETemplate): + def __init__(self, model_cfg, num_point_features, voxel_size, grid_size, point_cloud_range, **kwargs): + super().__init__(model_cfg=model_cfg) + + self.use_norm = self.model_cfg.USE_NORM + self.with_distance = self.model_cfg.WITH_DISTANCE + self.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZ + num_point_features += 6 if self.use_absolute_xyz else 3 + if self.with_distance: + num_point_features += 1 + + self.num_filters = self.model_cfg.NUM_FILTERS + assert len(self.num_filters) > 0 + num_filters = [num_point_features] + list(self.num_filters) + + pfn_layers = [] + for i in range(len(num_filters) - 1): + in_filters = num_filters[i] + out_filters = num_filters[i + 1] + pfn_layers.append( + PFNLayerV2(in_filters, out_filters, self.use_norm, last_layer=(i >= len(num_filters) - 2)) + ) + self.pfn_layers = nn.ModuleList(pfn_layers) + + self.voxel_x = voxel_size[0] + self.voxel_y = voxel_size[1] + self.voxel_z = voxel_size[2] + self.x_offset = self.voxel_x / 2 + point_cloud_range[0] + self.y_offset = self.voxel_y / 2 + point_cloud_range[1] + self.z_offset = self.voxel_z / 2 + point_cloud_range[2] + + self.scale_xyz = grid_size[0] * grid_size[1] * grid_size[2] + self.scale_yz = grid_size[1] * grid_size[2] + self.scale_z = grid_size[2] + + self.grid_size = torch.tensor(grid_size).cuda() + self.voxel_size = torch.tensor(voxel_size).cuda() + self.point_cloud_range = torch.tensor(point_cloud_range).cuda() + + def get_output_feature_dim(self): + return self.num_filters[-1] + + def forward(self, batch_dict, **kwargs): + points = batch_dict['points'] # (batch_idx, x, y, z, i, e) + + points_coords = torch.floor((points[:, [1,2,3]] - self.point_cloud_range[[0,1,2]]) / self.voxel_size[[0,1,2]]).int() + mask = ((points_coords >= 0) & (points_coords < self.grid_size[[0,1,2]])).all(dim=1) + points = points[mask] + points_coords = points_coords[mask] + points_xyz = points[:, [1, 2, 3]].contiguous() + + merge_coords = points[:, 0].int() * self.scale_xyz + \ + points_coords[:, 0] * self.scale_yz + \ + points_coords[:, 1] * self.scale_z + \ + points_coords[:, 2] + + unq_coords, unq_inv, unq_cnt = torch.unique(merge_coords, return_inverse=True, return_counts=True, dim=0) + + points_mean = torch_scatter.scatter_mean(points_xyz, unq_inv, dim=0) + f_cluster = points_xyz - points_mean[unq_inv, :] + + f_center = torch.zeros_like(points_xyz) + f_center[:, 0] = points_xyz[:, 0] - (points_coords[:, 0].to(points_xyz.dtype) * self.voxel_x + self.x_offset) + f_center[:, 1] = points_xyz[:, 1] - (points_coords[:, 1].to(points_xyz.dtype) * self.voxel_y + self.y_offset) + # f_center[:, 2] = points_xyz[:, 2] - self.z_offset + f_center[:, 2] = points_xyz[:, 2] - (points_coords[:, 2].to(points_xyz.dtype) * self.voxel_z + self.z_offset) + + if self.use_absolute_xyz: + features = [points[:, 1:], f_cluster, f_center] + else: + features = [points[:, 4:], f_cluster, f_center] + + if self.with_distance: + points_dist = torch.norm(points[:, 1:4], 2, dim=1, keepdim=True) + features.append(points_dist) + features = torch.cat(features, dim=-1) + + for pfn in self.pfn_layers: + features = pfn(features, unq_inv) + + # generate voxel coordinates + unq_coords = unq_coords.int() + voxel_coords = torch.stack((unq_coords // self.scale_xyz, + (unq_coords % self.scale_xyz) // self.scale_yz, + (unq_coords % self.scale_yz) // self.scale_z, + unq_coords % self.scale_z), dim=1) + voxel_coords = voxel_coords[:, [0, 3, 2, 1]] + + batch_dict['pillar_features'] = batch_dict['voxel_features'] = features + batch_dict['voxel_coords'] = voxel_coords + + return batch_dict