This commit is contained in:
2025-09-21 20:19:01 +08:00
parent c31c0febcc
commit 682687e697

View File

@@ -0,0 +1,992 @@
from typing import ValuesView
import torch.nn as nn
import torch
import numpy as np
import copy
import torch.nn.functional as F
from pcdet.ops.iou3d_nms import iou3d_nms_utils
from ...utils import common_utils, loss_utils
from .roi_head_template import RoIHeadTemplate
from ..model_utils.mppnet_utils import build_transformer, PointNet, MLP
from .target_assigner.proposal_target_layer import ProposalTargetLayer
from pcdet.ops.pointnet2.pointnet2_stack import pointnet2_modules as pointnet2_stack_modules
class ProposalTargetLayerMPPNet(ProposalTargetLayer):
def __init__(self, roi_sampler_cfg):
super().__init__(roi_sampler_cfg = roi_sampler_cfg)
def forward(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
rois: (B, num_rois, 7 + C)
roi_scores: (B, num_rois)
gt_boxes: (B, N, 7 + C + 1)
roi_labels: (B, num_rois)
Returns:
batch_dict:
rois: (B, M, 7 + C)
gt_of_rois: (B, M, 7 + C)
gt_iou_of_rois: (B, M)
roi_scores: (B, M)
roi_labels: (B, M)
reg_valid_mask: (B, M)
rcnn_cls_labels: (B, M)
"""
batch_rois, batch_gt_of_rois, batch_roi_ious, batch_roi_scores, batch_roi_labels, \
batch_trajectory_rois,batch_valid_length = self.sample_rois_for_mppnet(batch_dict=batch_dict)
# regression valid mask
reg_valid_mask = (batch_roi_ious > self.roi_sampler_cfg.REG_FG_THRESH).long()
# classification label
if self.roi_sampler_cfg.CLS_SCORE_TYPE == 'cls':
batch_cls_labels = (batch_roi_ious > self.roi_sampler_cfg.CLS_FG_THRESH).long()
ignore_mask = (batch_roi_ious > self.roi_sampler_cfg.CLS_BG_THRESH) & \
(batch_roi_ious < self.roi_sampler_cfg.CLS_FG_THRESH)
batch_cls_labels[ignore_mask > 0] = -1
elif self.roi_sampler_cfg.CLS_SCORE_TYPE == 'roi_iou':
iou_bg_thresh = self.roi_sampler_cfg.CLS_BG_THRESH
iou_fg_thresh = self.roi_sampler_cfg.CLS_FG_THRESH
fg_mask = batch_roi_ious > iou_fg_thresh
bg_mask = batch_roi_ious < iou_bg_thresh
interval_mask = (fg_mask == 0) & (bg_mask == 0)
batch_cls_labels = (fg_mask > 0).float()
batch_cls_labels[interval_mask] = \
(batch_roi_ious[interval_mask] - iou_bg_thresh) / (iou_fg_thresh - iou_bg_thresh)
else:
raise NotImplementedError
targets_dict = {'rois': batch_rois, 'gt_of_rois': batch_gt_of_rois,
'gt_iou_of_rois': batch_roi_ious,'roi_scores': batch_roi_scores,
'roi_labels': batch_roi_labels,'reg_valid_mask': reg_valid_mask,
'rcnn_cls_labels': batch_cls_labels,'trajectory_rois':batch_trajectory_rois,
'valid_length': batch_valid_length,
}
return targets_dict
def sample_rois_for_mppnet(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
rois: (B, num_rois, 7 + C)
roi_scores: (B, num_rois)
gt_boxes: (B, N, 7 + C + 1)
roi_labels: (B, num_rois)
Returns:
"""
cur_frame_idx = 0
batch_size = batch_dict['batch_size']
rois = batch_dict['trajectory_rois'][:,cur_frame_idx,:,:]
roi_scores = batch_dict['roi_scores'][:,:,cur_frame_idx]
roi_labels = batch_dict['roi_labels']
gt_boxes = batch_dict['gt_boxes']
code_size = rois.shape[-1]
batch_rois = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE, code_size)
batch_gt_of_rois = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE, gt_boxes.shape[-1])
batch_roi_ious = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE)
batch_roi_scores = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE)
batch_roi_labels = rois.new_zeros((batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE), dtype=torch.long)
trajectory_rois = batch_dict['trajectory_rois']
batch_trajectory_rois = rois.new_zeros(batch_size, trajectory_rois.shape[1],self.roi_sampler_cfg.ROI_PER_IMAGE,trajectory_rois.shape[-1])
valid_length = batch_dict['valid_length']
batch_valid_length = rois.new_zeros((batch_size, batch_dict['trajectory_rois'].shape[1], self.roi_sampler_cfg.ROI_PER_IMAGE))
for index in range(batch_size):
cur_trajectory_rois = trajectory_rois[index]
cur_roi, cur_gt, cur_roi_labels, cur_roi_scores = rois[index],gt_boxes[index], roi_labels[index], roi_scores[index]
if 'valid_length' in batch_dict.keys():
cur_valid_length = valid_length[index]
k = cur_gt.__len__() - 1
while k > 0 and cur_gt[k].sum() == 0:
k -= 1
cur_gt = cur_gt[:k + 1]
cur_gt = cur_gt.new_zeros((1, cur_gt.shape[1])) if len(cur_gt) == 0 else cur_gt
if self.roi_sampler_cfg.get('SAMPLE_ROI_BY_EACH_CLASS', False):
max_overlaps, gt_assignment = self.get_max_iou_with_same_class(
rois=cur_roi, roi_labels=cur_roi_labels,
gt_boxes=cur_gt[:, 0:7], gt_labels=cur_gt[:, -1].long()
)
else:
iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_roi, cur_gt[:, 0:7]) # (M, N)
max_overlaps, gt_assignment = torch.max(iou3d, dim=1)
sampled_inds,fg_inds, bg_inds = self.subsample_rois(max_overlaps=max_overlaps)
batch_roi_labels[index] = cur_roi_labels[sampled_inds.long()]
if self.roi_sampler_cfg.get('USE_ROI_AUG',False):
fg_rois, fg_iou3d = self.aug_roi_by_noise_torch(cur_roi[fg_inds], cur_gt[gt_assignment[fg_inds]],
max_overlaps[fg_inds], aug_times=self.roi_sampler_cfg.ROI_FG_AUG_TIMES)
bg_rois = cur_roi[bg_inds]
bg_iou3d = max_overlaps[bg_inds]
batch_rois[index] = torch.cat([fg_rois,bg_rois],0)
batch_roi_ious[index] = torch.cat([fg_iou3d,bg_iou3d],0)
batch_gt_of_rois[index] = cur_gt[gt_assignment[sampled_inds]]
else:
batch_rois[index] = cur_roi[sampled_inds]
batch_roi_ious[index] = max_overlaps[sampled_inds]
batch_gt_of_rois[index] = cur_gt[gt_assignment[sampled_inds]]
batch_roi_scores[index] = cur_roi_scores[sampled_inds]
if 'valid_length' in batch_dict.keys():
batch_valid_length[index] = cur_valid_length[:,sampled_inds]
if self.roi_sampler_cfg.USE_TRAJ_AUG.ENABLED:
batch_trajectory_rois_list = []
for idx in range(0,batch_dict['num_frames']):
if idx== cur_frame_idx:
batch_trajectory_rois_list.append(cur_trajectory_rois[cur_frame_idx:cur_frame_idx+1,sampled_inds])
continue
fg_trajs, _ = self.aug_roi_by_noise_torch(cur_trajectory_rois[idx,fg_inds], cur_trajectory_rois[idx,fg_inds][:,:8], max_overlaps[fg_inds], \
aug_times=self.roi_sampler_cfg.ROI_FG_AUG_TIMES,pos_thresh=self.roi_sampler_cfg.USE_TRAJ_AUG.THRESHOD)
bg_trajs = cur_trajectory_rois[idx,bg_inds]
batch_trajectory_rois_list.append(torch.cat([fg_trajs,bg_trajs],0)[None,:,:])
batch_trajectory_rois[index] = torch.cat(batch_trajectory_rois_list,0)
else:
batch_trajectory_rois[index] = cur_trajectory_rois[:,sampled_inds]
return batch_rois, batch_gt_of_rois, batch_roi_ious, batch_roi_scores, batch_roi_labels, batch_trajectory_rois,batch_valid_length
def subsample_rois(self, max_overlaps):
# sample fg, easy_bg, hard_bg
fg_rois_per_image = int(np.round(self.roi_sampler_cfg.FG_RATIO * self.roi_sampler_cfg.ROI_PER_IMAGE))
fg_thresh = min(self.roi_sampler_cfg.REG_FG_THRESH, self.roi_sampler_cfg.CLS_FG_THRESH)
fg_inds = ((max_overlaps >= fg_thresh)).nonzero().view(-1)
easy_bg_inds = ((max_overlaps < self.roi_sampler_cfg.CLS_BG_THRESH_LO)).nonzero().view(-1)
hard_bg_inds = ((max_overlaps < self.roi_sampler_cfg.REG_FG_THRESH) &
(max_overlaps >= self.roi_sampler_cfg.CLS_BG_THRESH_LO)).nonzero().view(-1)
fg_num_rois = fg_inds.numel()
bg_num_rois = hard_bg_inds.numel() + easy_bg_inds.numel()
if fg_num_rois > 0 and bg_num_rois > 0:
# sampling fg
fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois)
rand_num = torch.from_numpy(np.random.permutation(fg_num_rois)).type_as(max_overlaps).long()
fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]]
# sampling bg
bg_rois_per_this_image = self.roi_sampler_cfg.ROI_PER_IMAGE - fg_rois_per_this_image
bg_inds = self.sample_bg_inds(
hard_bg_inds, easy_bg_inds, bg_rois_per_this_image, self.roi_sampler_cfg.HARD_BG_RATIO
)
elif fg_num_rois > 0 and bg_num_rois == 0:
# sampling fg
rand_num = np.floor(np.random.rand(self.roi_sampler_cfg.ROI_PER_IMAGE) * fg_num_rois)
rand_num = torch.from_numpy(rand_num).type_as(max_overlaps).long()
fg_inds = fg_inds[rand_num]
bg_inds = torch.tensor([]).type_as(fg_inds)
elif bg_num_rois > 0 and fg_num_rois == 0:
# sampling bg
bg_rois_per_this_image = self.roi_sampler_cfg.ROI_PER_IMAGE
bg_inds = self.sample_bg_inds(
hard_bg_inds, easy_bg_inds, bg_rois_per_this_image, self.roi_sampler_cfg.HARD_BG_RATIO
)
else:
print('maxoverlaps:(min=%f, max=%f)' % (max_overlaps.min().item(), max_overlaps.max().item()))
print('ERROR: FG=%d, BG=%d' % (fg_num_rois, bg_num_rois))
raise NotImplementedError
sampled_inds = torch.cat((fg_inds, bg_inds), dim=0)
return sampled_inds.long(), fg_inds.long(), bg_inds.long()
def aug_roi_by_noise_torch(self,roi_boxes3d, gt_boxes3d, iou3d_src, aug_times=10, pos_thresh=None):
iou_of_rois = torch.zeros(roi_boxes3d.shape[0]).type_as(gt_boxes3d)
if pos_thresh is None:
pos_thresh = min(self.roi_sampler_cfg.REG_FG_THRESH, self.roi_sampler_cfg.CLS_FG_THRESH)
for k in range(roi_boxes3d.shape[0]):
temp_iou = cnt = 0
roi_box3d = roi_boxes3d[k]
gt_box3d = gt_boxes3d[k].view(1, gt_boxes3d.shape[-1])
aug_box3d = roi_box3d
keep = True
while temp_iou < pos_thresh and cnt < aug_times:
if np.random.rand() <= self.roi_sampler_cfg.RATIO:
aug_box3d = roi_box3d # p=RATIO to keep the original roi box
keep = True
else:
aug_box3d = self.random_aug_box3d(roi_box3d)
keep = False
aug_box3d = aug_box3d.view((1, aug_box3d.shape[-1]))
iou3d = iou3d_nms_utils.boxes_iou3d_gpu(aug_box3d[:,:7], gt_box3d[:,:7])
temp_iou = iou3d[0][0]
cnt += 1
roi_boxes3d[k] = aug_box3d.view(-1)
if cnt == 0 or keep:
iou_of_rois[k] = iou3d_src[k]
else:
iou_of_rois[k] = temp_iou
return roi_boxes3d, iou_of_rois
def random_aug_box3d(self,box3d):
"""
:param box3d: (7) [x, y, z, h, w, l, ry]
random shift, scale, orientation
"""
if self.roi_sampler_cfg.REG_AUG_METHOD == 'single':
pos_shift = (torch.rand(3, device=box3d.device) - 0.5) # [-0.5 ~ 0.5]
hwl_scale = (torch.rand(3, device=box3d.device) - 0.5) / (0.5 / 0.15) + 1.0 #
angle_rot = (torch.rand(1, device=box3d.device) - 0.5) / (0.5 / (np.pi / 12)) # [-pi/12 ~ pi/12]
aug_box3d = torch.cat([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot, box3d[7:]], dim=0)
return aug_box3d
elif self.roi_sampler_cfg.REG_AUG_METHOD == 'multiple':
# pos_range, hwl_range, angle_range, mean_iou
range_config = [[0.2, 0.1, np.pi / 12, 0.7],
[0.3, 0.15, np.pi / 12, 0.6],
[0.5, 0.15, np.pi / 9, 0.5],
[0.8, 0.15, np.pi / 6, 0.3],
[1.0, 0.15, np.pi / 3, 0.2]]
idx = torch.randint(low=0, high=len(range_config), size=(1,))[0].long()
pos_shift = ((torch.rand(3, device=box3d.device) - 0.5) / 0.5) * range_config[idx][0]
hwl_scale = ((torch.rand(3, device=box3d.device) - 0.5) / 0.5) * range_config[idx][1] + 1.0
angle_rot = ((torch.rand(1, device=box3d.device) - 0.5) / 0.5) * range_config[idx][2]
aug_box3d = torch.cat([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot], dim=0)
return aug_box3d
elif self.roi_sampler_cfg.REG_AUG_METHOD == 'normal':
x_shift = np.random.normal(loc=0, scale=0.3)
y_shift = np.random.normal(loc=0, scale=0.2)
z_shift = np.random.normal(loc=0, scale=0.3)
h_shift = np.random.normal(loc=0, scale=0.25)
w_shift = np.random.normal(loc=0, scale=0.15)
l_shift = np.random.normal(loc=0, scale=0.5)
ry_shift = ((torch.rand() - 0.5) / 0.5) * np.pi / 12
aug_box3d = np.array([box3d[0] + x_shift, box3d[1] + y_shift, box3d[2] + z_shift, box3d[3] + h_shift,
box3d[4] + w_shift, box3d[5] + l_shift, box3d[6] + ry_shift], dtype=np.float32)
aug_box3d = torch.from_numpy(aug_box3d).type_as(box3d)
return aug_box3d
else:
raise NotImplementedError
class MPPNetHead(RoIHeadTemplate):
def __init__(self,model_cfg, num_class=1,**kwargs):
super().__init__(num_class=num_class, model_cfg=model_cfg)
self.model_cfg = model_cfg
self.proposal_target_layer = ProposalTargetLayerMPPNet(roi_sampler_cfg=self.model_cfg.TARGET_CONFIG)
self.use_time_stamp = self.model_cfg.get('USE_TIMESTAMP',None)
self.num_lidar_points = self.model_cfg.Transformer.num_lidar_points
self.avg_stage1_score = self.model_cfg.get('AVG_STAGE1_SCORE', None)
self.nhead = model_cfg.Transformer.nheads
self.num_enc_layer = model_cfg.Transformer.enc_layers
hidden_dim = model_cfg.TRANS_INPUT
self.hidden_dim = model_cfg.TRANS_INPUT
self.num_groups = model_cfg.Transformer.num_groups
self.grid_size = model_cfg.ROI_GRID_POOL.GRID_SIZE
self.num_proxy_points = model_cfg.Transformer.num_proxy_points
self.seqboxembed = PointNet(8,model_cfg=self.model_cfg)
self.jointembed = MLP(self.hidden_dim*(self.num_groups+1), model_cfg.Transformer.hidden_dim, self.box_coder.code_size * self.num_class, 4)
num_radius = len(self.model_cfg.ROI_GRID_POOL.POOL_RADIUS)
self.up_dimension_geometry = MLP(input_dim = 29, hidden_dim = 64, output_dim =hidden_dim//num_radius, num_layers = 3)
self.up_dimension_motion = MLP(input_dim = 30, hidden_dim = 64, output_dim = hidden_dim, num_layers = 3)
self.transformer = build_transformer(model_cfg.Transformer)
self.roi_grid_pool_layer = pointnet2_stack_modules.StackSAModuleMSG(
radii=self.model_cfg.ROI_GRID_POOL.POOL_RADIUS,
nsamples=self.model_cfg.ROI_GRID_POOL.NSAMPLE,
mlps=self.model_cfg.ROI_GRID_POOL.MLPS,
use_xyz=True,
pool_method=self.model_cfg.ROI_GRID_POOL.POOL_METHOD,
)
self.class_embed = nn.ModuleList()
self.class_embed.append(nn.Linear(model_cfg.Transformer.hidden_dim, 1))
self.bbox_embed = nn.ModuleList()
for _ in range(self.num_groups):
self.bbox_embed.append(MLP(model_cfg.Transformer.hidden_dim, model_cfg.Transformer.hidden_dim, self.box_coder.code_size * self.num_class, 4))
if self.model_cfg.Transformer.use_grid_pos.enabled:
if self.model_cfg.Transformer.use_grid_pos.init_type == 'index':
self.grid_index = torch.cat([i.reshape(-1,1)for i in torch.meshgrid(torch.arange(self.grid_size), torch.arange(self.grid_size), torch.arange(self.grid_size))],1).float().cuda()
self.grid_pos_embeded = MLP(input_dim = 3, hidden_dim = 256, output_dim = hidden_dim, num_layers = 2)
else:
self.pos = nn.Parameter(torch.zeros(1, self.num_grid_points, 256))
def init_weights(self, weight_init='xavier'):
if weight_init == 'kaiming':
init_func = nn.init.kaiming_normal_
elif weight_init == 'xavier':
init_func = nn.init.xavier_normal_
elif weight_init == 'normal':
init_func = nn.init.normal_
else:
raise NotImplementedError
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d):
if weight_init == 'normal':
init_func(m.weight, mean=0, std=0.001)
else:
init_func(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
nn.init.normal_(self.bbox_embed.layers[-1].weight, mean=0, std=0.001)
def get_corner_points_of_roi(self, rois):
rois = rois.view(-1, rois.shape[-1])
batch_size_rcnn = rois.shape[0]
local_roi_grid_points = self.get_corner_points(rois, batch_size_rcnn)
local_roi_grid_points = common_utils.rotate_points_along_z(
local_roi_grid_points.clone(), rois[:, 6]
).squeeze(dim=1)
global_center = rois[:, 0:3].clone()
global_roi_grid_points = local_roi_grid_points + global_center.unsqueeze(dim=1)
return global_roi_grid_points, local_roi_grid_points
@staticmethod
def get_dense_grid_points(rois, batch_size_rcnn, grid_size):
faked_features = rois.new_ones((grid_size, grid_size, grid_size))
dense_idx = faked_features.nonzero()
dense_idx = dense_idx.repeat(batch_size_rcnn, 1, 1).float()
local_roi_size = rois.view(batch_size_rcnn, -1)[:, 3:6]
roi_grid_points = (dense_idx + 0.5) / grid_size * local_roi_size.unsqueeze(dim=1) \
- (local_roi_size.unsqueeze(dim=1) / 2)
return roi_grid_points
@staticmethod
def get_corner_points(rois, batch_size_rcnn):
faked_features = rois.new_ones((2, 2, 2))
dense_idx = faked_features.nonzero()
dense_idx = dense_idx.repeat(batch_size_rcnn, 1, 1).float()
local_roi_size = rois.view(batch_size_rcnn, -1)[:, 3:6]
roi_grid_points = dense_idx * local_roi_size.unsqueeze(dim=1) \
- (local_roi_size.unsqueeze(dim=1) / 2)
return roi_grid_points
def roi_grid_pool(self, batch_size, rois, point_coords, point_features,batch_dict=None,batch_cnt=None):
num_frames = batch_dict['num_frames']
num_rois = rois.shape[2]*rois.shape[1]
global_roi_proxy_points, local_roi_proxy_points = self.get_proxy_points_of_roi(
rois.permute(0,2,1,3).contiguous(), grid_size=self.grid_size
)
global_roi_proxy_points = global_roi_proxy_points.view(batch_size, -1, 3)
point_coords = point_coords.view(point_coords.shape[0]*num_frames,point_coords.shape[1]//num_frames,point_coords.shape[-1])
xyz = point_coords[:, :, 0:3].view(-1,3)
num_points = point_coords.shape[1]
num_proxy_points = self.num_proxy_points
if batch_cnt is None:
xyz_batch_cnt = torch.tensor([num_points]*num_rois*batch_size).cuda().int()
else:
xyz_batch_cnt = torch.tensor(batch_cnt).cuda().int()
new_xyz_batch_cnt = torch.tensor([num_proxy_points]*num_rois*batch_size).cuda().int()
new_xyz = global_roi_proxy_points.view(-1, 3)
_, pooled_features = self.roi_grid_pool_layer(
xyz=xyz.contiguous(),
xyz_batch_cnt=xyz_batch_cnt,
new_xyz=new_xyz,
new_xyz_batch_cnt=new_xyz_batch_cnt,
features=point_features.view(-1,point_features.shape[-1]).contiguous(),
)
features = pooled_features.view(
point_features.shape[0], num_frames*self.num_proxy_points,
pooled_features.shape[-1]).contiguous()
return features,global_roi_proxy_points.view(batch_size*rois.shape[2], num_frames*num_proxy_points,3).contiguous()
def get_proxy_points_of_roi(self, rois, grid_size):
rois = rois.view(-1, rois.shape[-1])
batch_size_rcnn = rois.shape[0]
local_roi_grid_points = self.get_dense_grid_points(rois, batch_size_rcnn, grid_size)
local_roi_grid_points = common_utils.rotate_points_along_z(local_roi_grid_points.clone(), rois[:, 6]).squeeze(dim=1)
global_center = rois[:, 0:3].clone()
global_roi_grid_points = local_roi_grid_points + global_center.unsqueeze(dim=1)
return global_roi_grid_points, local_roi_grid_points
def spherical_coordinate(self, src, diag_dist):
assert (src.shape[-1] == 27)
device = src.device
indices_x = torch.LongTensor([0,3,6,9,12,15,18,21,24]).to(device) #
indices_y = torch.LongTensor([1,4,7,10,13,16,19,22,25]).to(device) #
indices_z = torch.LongTensor([2,5,8,11,14,17,20,23,26]).to(device)
src_x = torch.index_select(src, -1, indices_x)
src_y = torch.index_select(src, -1, indices_y)
src_z = torch.index_select(src, -1, indices_z)
dis = (src_x ** 2 + src_y ** 2 + src_z ** 2) ** 0.5
phi = torch.atan(src_y / (src_x + 1e-5))
the = torch.acos(src_z / (dis + 1e-5))
dis = dis / (diag_dist + 1e-5)
src = torch.cat([dis, phi, the], dim = -1)
return src
def crop_current_frame_points(self, src, batch_size,trajectory_rois,num_rois,batch_dict):
for bs_idx in range(batch_size):
cur_batch_boxes = trajectory_rois[bs_idx,0,:,:7].view(-1,7)
cur_radiis = torch.sqrt((cur_batch_boxes[:,3]/2) ** 2 + (cur_batch_boxes[:,4]/2) ** 2) * 1.1
cur_points = batch_dict['points'][(batch_dict['points'][:, 0] == bs_idx)][:,1:]
dis = torch.norm((cur_points[:,:2].unsqueeze(0) - cur_batch_boxes[:,:2].unsqueeze(1).repeat(1,cur_points.shape[0],1)), dim = 2)
point_mask = (dis <= cur_radiis.unsqueeze(-1))
sampled_idx = torch.topk(point_mask.float(),128)[1]
sampled_idx_buffer = sampled_idx[:, 0:1].repeat(1, 128)
roi_idx = torch.arange(num_rois)[:, None].repeat(1, 128)
sampled_mask = point_mask[roi_idx, sampled_idx]
sampled_idx_buffer[sampled_mask] = sampled_idx[sampled_mask]
src[bs_idx] = cur_points[sampled_idx_buffer][:,:,:5]
empty_flag = sampled_mask.sum(-1)==0
src[bs_idx,empty_flag] = 0
src = src.repeat([1,1,trajectory_rois.shape[1],1])
return src
def crop_previous_frame_points(self,src,batch_size,trajectory_rois,num_rois,valid_length,batch_dict):
for bs_idx in range(batch_size):
cur_points = batch_dict['points'][(batch_dict['points'][:, 0] == bs_idx)][:,1:]
for idx in range(1,trajectory_rois.shape[1]):
time_mask = (cur_points[:,-1] - idx*0.1).abs() < 1e-3
cur_time_points = cur_points[time_mask]
cur_batch_boxes = trajectory_rois[bs_idx,idx,:,:7].view(-1,7)
cur_radiis = torch.sqrt((cur_batch_boxes[:,3]/2) ** 2 + (cur_batch_boxes[:,4]/2) ** 2) * 1.1
if not self.training and cur_batch_boxes.shape[0] > 32:
length_iter= cur_batch_boxes.shape[0]//32
dis_list = []
for i in range(length_iter+1):
dis = torch.norm((cur_time_points[:,:2].unsqueeze(0) - \
cur_batch_boxes[32*i:32*(i+1),:2].unsqueeze(1).repeat(1,cur_time_points.shape[0],1)), dim = 2)
dis_list.append(dis)
dis = torch.cat(dis_list,0)
else:
dis = torch.norm((cur_time_points[:,:2].unsqueeze(0) - \
cur_batch_boxes[:,:2].unsqueeze(1).repeat(1,cur_time_points.shape[0],1)), dim = 2)
point_mask = (dis <= cur_radiis.unsqueeze(-1)).view(trajectory_rois.shape[2],-1)
for roi_box_idx in range(0, num_rois):
if not valid_length[bs_idx,idx,roi_box_idx]:
continue
cur_roi_points = cur_time_points[point_mask[roi_box_idx]]
if cur_roi_points.shape[0] > self.num_lidar_points:
np.random.seed(0)
choice = np.random.choice(cur_roi_points.shape[0], self.num_lidar_points, replace=True)
cur_roi_points_sample = cur_roi_points[choice]
elif cur_roi_points.shape[0] == 0:
cur_roi_points_sample = cur_roi_points.new_zeros(self.num_lidar_points, 6)
else:
empty_num = self.num_lidar_points - cur_roi_points.shape[0]
add_zeros = cur_roi_points.new_zeros(empty_num, 6)
add_zeros = cur_roi_points[0].repeat(empty_num, 1)
cur_roi_points_sample = torch.cat([cur_roi_points, add_zeros], dim = 0)
if not self.use_time_stamp:
cur_roi_points_sample = cur_roi_points_sample[:,:-1]
src[bs_idx, roi_box_idx, self.num_lidar_points*idx:self.num_lidar_points*(idx+1), :] = cur_roi_points_sample
return src
def get_proposal_aware_geometry_feature(self,src, batch_size,trajectory_rois,num_rois,batch_dict):
proposal_aware_feat_list = []
for i in range(trajectory_rois.shape[1]):
corner_points, _ = self.get_corner_points_of_roi(trajectory_rois[:,i,:,:].contiguous())
corner_points = corner_points.view(batch_size, num_rois, -1, corner_points.shape[-1])
corner_points = corner_points.view(batch_size * num_rois, -1)
trajectory_roi_center = trajectory_rois[:,i,:,:].contiguous().reshape(batch_size * num_rois, -1)[:,:3]
corner_add_center_points = torch.cat([corner_points, trajectory_roi_center], dim = -1)
proposal_aware_feat = src[:,i*self.num_lidar_points:(i+1)*self.num_lidar_points,:3].repeat(1,1,9) - \
corner_add_center_points.unsqueeze(1).repeat(1,self.num_lidar_points,1)
lwh = trajectory_rois[:,i,:,:].reshape(batch_size * num_rois, -1)[:,3:6].unsqueeze(1).repeat(1,proposal_aware_feat.shape[1],1)
diag_dist = (lwh[:,:,0]**2 + lwh[:,:,1]**2 + lwh[:,:,2]**2) ** 0.5
proposal_aware_feat = self.spherical_coordinate(proposal_aware_feat, diag_dist = diag_dist.unsqueeze(-1))
proposal_aware_feat_list.append(proposal_aware_feat)
proposal_aware_feat = torch.cat(proposal_aware_feat_list,dim=1)
proposal_aware_feat = torch.cat([proposal_aware_feat, src[:,:,3:]], dim = -1)
src_gemoetry = self.up_dimension_geometry(proposal_aware_feat)
proxy_point_geometry, proxy_points = self.roi_grid_pool(batch_size,trajectory_rois,src,src_gemoetry,batch_dict,batch_cnt=None)
return proxy_point_geometry,proxy_points
def get_proposal_aware_motion_feature(self,proxy_point,batch_size,trajectory_rois,num_rois,batch_dict):
time_stamp = torch.ones([proxy_point.shape[0],proxy_point.shape[1],1]).cuda()
padding_zero = torch.zeros([proxy_point.shape[0],proxy_point.shape[1],2]).cuda()
proxy_point_time_padding = torch.cat([padding_zero,time_stamp],-1)
num_frames = trajectory_rois.shape[1]
for i in range(num_frames):
proxy_point_time_padding[:,i*self.num_proxy_points:(i+1)*self.num_proxy_points,-1] = i*0.1
corner_points, _ = self.get_corner_points_of_roi(trajectory_rois[:,0,:,:].contiguous())
corner_points = corner_points.view(batch_size, num_rois, -1, corner_points.shape[-1])
corner_points = corner_points.view(batch_size * num_rois, -1)
trajectory_roi_center = trajectory_rois[:,0,:,:].reshape(batch_size * num_rois, -1)[:,:3]
corner_add_center_points = torch.cat([corner_points, trajectory_roi_center], dim = -1)
proposal_aware_feat = proxy_point[:,:,:3].repeat(1,1,9) - corner_add_center_points.unsqueeze(1)
lwh = trajectory_rois[:,0,:,:].reshape(batch_size * num_rois, -1)[:,3:6].unsqueeze(1).repeat(1,proxy_point.shape[1],1)
diag_dist = (lwh[:,:,0]**2 + lwh[:,:,1]**2 + lwh[:,:,2]**2) ** 0.5
proposal_aware_feat = self.spherical_coordinate(proposal_aware_feat, diag_dist = diag_dist.unsqueeze(-1))
proposal_aware_feat = torch.cat([proposal_aware_feat,proxy_point_time_padding],-1)
proxy_point_motion_feat = self.up_dimension_motion(proposal_aware_feat)
return proxy_point_motion_feat
def trajectories_auxiliary_branch(self,trajectory_rois):
time_stamp = torch.ones([trajectory_rois.shape[0],trajectory_rois.shape[1],trajectory_rois.shape[2],1]).cuda()
for i in range(time_stamp.shape[1]):
time_stamp[:,i,:] = i*0.1
box_seq = torch.cat([trajectory_rois[:,:,:,:7],time_stamp],-1)
box_seq[:, :, :,0:3] = box_seq[:, :, :,0:3] - box_seq[:, 0:1, :, 0:3]
roi_ry = box_seq[:,:,:,6] % (2 * np.pi)
roi_ry_t0 = roi_ry[:,0]
roi_ry_t0 = roi_ry_t0.repeat(1,box_seq.shape[1])
box_seq = common_utils.rotate_points_along_z(
points=box_seq.view(-1, 1, box_seq.shape[-1]), angle=-roi_ry_t0.view(-1)
).view(box_seq.shape[0],box_seq.shape[1], -1, box_seq.shape[-1])
box_seq[:, :, :, 6] = 0
batch_rcnn = box_seq.shape[0]*box_seq.shape[2]
box_reg, box_feat, _ = self.seqboxembed(box_seq.permute(0,2,3,1).contiguous().view(batch_rcnn,box_seq.shape[-1],box_seq.shape[1]))
return box_reg, box_feat
def generate_trajectory(self,cur_batch_boxes,proposals_list,batch_dict):
trajectory_rois = cur_batch_boxes[:,None,:,:].repeat(1,batch_dict['rois'].shape[-2],1,1)
trajectory_rois[:,0,:,:]= cur_batch_boxes
valid_length = torch.zeros([batch_dict['batch_size'],batch_dict['rois'].shape[-2],trajectory_rois.shape[2]])
valid_length[:,0] = 1
num_frames = batch_dict['rois'].shape[-2]
for i in range(1,num_frames):
frame = torch.zeros_like(cur_batch_boxes)
frame[:,:,0:2] = trajectory_rois[:,i-1,:,0:2] + trajectory_rois[:,i-1,:,7:9]
frame[:,:,2:] = trajectory_rois[:,i-1,:,2:]
for bs_idx in range( batch_dict['batch_size']):
iou3d = iou3d_nms_utils.boxes_iou3d_gpu(frame[bs_idx,:,:7], proposals_list[bs_idx,i,:,:7])
max_overlaps, traj_assignment = torch.max(iou3d, dim=1)
fg_inds = ((max_overlaps >= 0.5)).nonzero().view(-1)
valid_length[bs_idx,i,fg_inds] = 1
trajectory_rois[bs_idx,i,fg_inds,:] = proposals_list[bs_idx,i,traj_assignment[fg_inds]]
batch_dict['valid_length'] = valid_length
return trajectory_rois,valid_length
def forward(self, batch_dict):
"""
:param input_data: input dict
:return:
"""
batch_dict['rois'] = batch_dict['proposals_list'].permute(0,2,1,3)
num_rois = batch_dict['rois'].shape[1]
batch_dict['num_frames'] = batch_dict['rois'].shape[2]
batch_dict['roi_scores'] = batch_dict['roi_scores'].permute(0,2,1)
batch_dict['roi_labels'] = batch_dict['roi_labels'][:,0,:].long()
proposals_list = batch_dict['proposals_list']
batch_size = batch_dict['batch_size']
cur_batch_boxes = copy.deepcopy(batch_dict['rois'].detach())[:,:,0]
batch_dict['cur_frame_idx'] = 0
trajectory_rois,valid_length = self.generate_trajectory(cur_batch_boxes,proposals_list,batch_dict)
batch_dict['traj_memory'] = trajectory_rois
batch_dict['has_class_labels'] = True
batch_dict['trajectory_rois'] = trajectory_rois
if self.training:
targets_dict = self.assign_targets(batch_dict)
batch_dict['rois'] = targets_dict['rois']
batch_dict['roi_scores'] = targets_dict['roi_scores']
batch_dict['roi_labels'] = targets_dict['roi_labels']
targets_dict['trajectory_rois'][:,batch_dict['cur_frame_idx'],:,:] = batch_dict['rois']
trajectory_rois = targets_dict['trajectory_rois']
valid_length = targets_dict['valid_length']
empty_mask = batch_dict['rois'][:,:,:6].sum(-1)==0
else:
empty_mask = batch_dict['rois'][:,:,0,:6].sum(-1)==0
batch_dict['valid_traj_mask'] = ~empty_mask
rois = batch_dict['rois']
num_rois = batch_dict['rois'].shape[1]
num_sample = self.num_lidar_points
src = rois.new_zeros(batch_size, num_rois, num_sample, 5)
src = self.crop_current_frame_points(src, batch_size, trajectory_rois, num_rois,batch_dict)
src = self.crop_previous_frame_points(src, batch_size,trajectory_rois, num_rois,valid_length,batch_dict)
src = src.view(batch_size * num_rois, -1, src.shape[-1])
src_geometry_feature,proxy_points = self.get_proposal_aware_geometry_feature(src,batch_size,trajectory_rois,num_rois,batch_dict)
src_motion_feature = self.get_proposal_aware_motion_feature(proxy_points,batch_size,trajectory_rois,num_rois,batch_dict)
src = src_geometry_feature + src_motion_feature
box_reg, feat_box = self.trajectories_auxiliary_branch(trajectory_rois)
if self.model_cfg.get('USE_TRAJ_EMPTY_MASK',None):
src[empty_mask.view(-1)] = 0
if self.model_cfg.Transformer.use_grid_pos.init_type == 'index':
pos = self.grid_pos_embeded(self.grid_index.cuda())[None,:,:]
pos = torch.cat([torch.zeros(1,1,self.hidden_dim).cuda(),pos],1)
else:
pos=None
hs, tokens = self.transformer(src,pos=pos)
point_cls_list = []
point_reg_list = []
for i in range(self.num_enc_layer):
point_cls_list.append(self.class_embed[0](tokens[i][0]))
for i in range(hs.shape[0]):
for j in range(self.num_enc_layer):
point_reg_list.append(self.bbox_embed[i](tokens[j][i]))
point_cls = torch.cat(point_cls_list,0)
point_reg = torch.cat(point_reg_list,0)
hs = hs.permute(1,0,2).reshape(hs.shape[1],-1)
joint_reg = self.jointembed(torch.cat([hs,feat_box],-1))
rcnn_cls = point_cls
rcnn_reg = joint_reg
if not self.training:
batch_dict['rois'] = batch_dict['rois'][:,:,0].contiguous()
rcnn_cls = rcnn_cls[-rcnn_cls.shape[0]//self.num_enc_layer:]
batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
)
batch_dict['batch_box_preds'] = batch_box_preds
batch_dict['cls_preds_normalized'] = False
if self.avg_stage1_score:
stage1_score = batch_dict['roi_scores'][:,:,:1]
batch_cls_preds = F.sigmoid(batch_cls_preds)
if self.model_cfg.get('IOU_WEIGHT', None):
batch_box_preds_list = []
roi_labels_list = []
batch_cls_preds_list = []
for bs_idx in range(batch_size):
car_mask = batch_dict['roi_labels'][bs_idx] ==1
batch_cls_preds_car = batch_cls_preds[bs_idx].pow(self.model_cfg.IOU_WEIGHT[0])* \
stage1_score[bs_idx].pow(1-self.model_cfg.IOU_WEIGHT[0])
batch_cls_preds_car = batch_cls_preds_car[car_mask][None]
batch_cls_preds_pedcyc = batch_cls_preds[bs_idx].pow(self.model_cfg.IOU_WEIGHT[1])* \
stage1_score[bs_idx].pow(1-self.model_cfg.IOU_WEIGHT[1])
batch_cls_preds_pedcyc = batch_cls_preds_pedcyc[~car_mask][None]
cls_preds = torch.cat([batch_cls_preds_car,batch_cls_preds_pedcyc],1)
box_preds = torch.cat([batch_dict['batch_box_preds'][bs_idx][car_mask],
batch_dict['batch_box_preds'][bs_idx][~car_mask]],0)[None]
roi_labels = torch.cat([batch_dict['roi_labels'][bs_idx][car_mask],
batch_dict['roi_labels'][bs_idx][~car_mask]],0)[None]
batch_box_preds_list.append(box_preds)
roi_labels_list.append(roi_labels)
batch_cls_preds_list.append(cls_preds)
batch_dict['batch_box_preds'] = torch.cat(batch_box_preds_list,0)
batch_dict['roi_labels'] = torch.cat(roi_labels_list,0)
batch_cls_preds = torch.cat(batch_cls_preds_list,0)
else:
batch_cls_preds = torch.sqrt(batch_cls_preds*stage1_score)
batch_dict['cls_preds_normalized'] = True
batch_dict['batch_cls_preds'] = batch_cls_preds
else:
targets_dict['batch_size'] = batch_size
targets_dict['rcnn_cls'] = rcnn_cls
targets_dict['rcnn_reg'] = rcnn_reg
targets_dict['box_reg'] = box_reg
targets_dict['point_reg'] = point_reg
targets_dict['point_cls'] = point_cls
self.forward_ret_dict = targets_dict
return batch_dict
def get_loss(self, tb_dict=None):
tb_dict = {} if tb_dict is None else tb_dict
rcnn_loss = 0
rcnn_loss_cls, cls_tb_dict = self.get_box_cls_layer_loss(self.forward_ret_dict)
rcnn_loss += rcnn_loss_cls
tb_dict.update(cls_tb_dict)
rcnn_loss_reg, reg_tb_dict = self.get_box_reg_layer_loss(self.forward_ret_dict)
rcnn_loss += rcnn_loss_reg
tb_dict.update(reg_tb_dict)
tb_dict['rcnn_loss'] = rcnn_loss.item()
return rcnn_loss, tb_dict
def get_box_reg_layer_loss(self, forward_ret_dict):
loss_cfgs = self.model_cfg.LOSS_CONFIG
code_size = self.box_coder.code_size
reg_valid_mask = forward_ret_dict['reg_valid_mask'].view(-1)
batch_size = forward_ret_dict['batch_size']
gt_boxes3d_ct = forward_ret_dict['gt_of_rois'][..., 0:code_size]
gt_of_rois_src = forward_ret_dict['gt_of_rois_src'][..., 0:code_size].view(-1, code_size)
rcnn_reg = forward_ret_dict['rcnn_reg']
roi_boxes3d = forward_ret_dict['rois']
rcnn_batch_size = gt_boxes3d_ct.view(-1, code_size).shape[0]
fg_mask = (reg_valid_mask > 0)
fg_sum = fg_mask.long().sum().item()
tb_dict = {}
if loss_cfgs.REG_LOSS == 'smooth-l1':
rois_anchor = roi_boxes3d.clone().detach()[:,:,:7].contiguous().view(-1, code_size)
rois_anchor[:, 0:3] = 0
rois_anchor[:, 6] = 0
reg_targets = self.box_coder.encode_torch(
gt_boxes3d_ct.view(rcnn_batch_size, code_size), rois_anchor
)
rcnn_loss_reg = self.reg_loss_func(
rcnn_reg.view(rcnn_batch_size, -1).unsqueeze(dim=0),
reg_targets.unsqueeze(dim=0),
) # [B, M, 7]
rcnn_loss_reg = (rcnn_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(fg_sum, 1)
rcnn_loss_reg = rcnn_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight']*loss_cfgs.LOSS_WEIGHTS['traj_reg_weight'][0]
tb_dict['rcnn_loss_reg'] = rcnn_loss_reg.item()
if self.model_cfg.USE_AUX_LOSS:
point_reg = forward_ret_dict['point_reg']
groups = point_reg.shape[0]//reg_targets.shape[0]
if groups != 1 :
point_loss_regs = 0
slice = reg_targets.shape[0]
for i in range(groups):
point_loss_reg = self.reg_loss_func(
point_reg[i*slice:(i+1)*slice].view(slice, -1).unsqueeze(dim=0),reg_targets.unsqueeze(dim=0),)
point_loss_reg = (point_loss_reg.view(slice, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(fg_sum, 1)
point_loss_reg = point_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight']*loss_cfgs.LOSS_WEIGHTS['traj_reg_weight'][2]
point_loss_regs += point_loss_reg
point_loss_regs = point_loss_regs / groups
tb_dict['point_loss_reg'] = point_loss_regs.item()
rcnn_loss_reg += point_loss_regs
else:
point_loss_reg = self.reg_loss_func(point_reg.view(rcnn_batch_size, -1).unsqueeze(dim=0),reg_targets.unsqueeze(dim=0),)
point_loss_reg = (point_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(fg_sum, 1)
point_loss_reg = point_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight']*loss_cfgs.LOSS_WEIGHTS['traj_reg_weight'][2]
tb_dict['point_loss_reg'] = point_loss_reg.item()
rcnn_loss_reg += point_loss_reg
seqbox_reg = forward_ret_dict['box_reg']
seqbox_loss_reg = self.reg_loss_func(seqbox_reg.view(rcnn_batch_size, -1).unsqueeze(dim=0),reg_targets.unsqueeze(dim=0),)
seqbox_loss_reg = (seqbox_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(fg_sum, 1)
seqbox_loss_reg = seqbox_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight']*loss_cfgs.LOSS_WEIGHTS['traj_reg_weight'][1]
tb_dict['seqbox_loss_reg'] = seqbox_loss_reg.item()
rcnn_loss_reg += seqbox_loss_reg
if loss_cfgs.CORNER_LOSS_REGULARIZATION and fg_sum > 0:
fg_rcnn_reg = rcnn_reg.view(rcnn_batch_size, -1)[fg_mask]
fg_roi_boxes3d = roi_boxes3d[:,:,:7].contiguous().view(-1, code_size)[fg_mask]
fg_roi_boxes3d = fg_roi_boxes3d.view(1, -1, code_size)
batch_anchors = fg_roi_boxes3d.clone().detach()
roi_ry = fg_roi_boxes3d[:, :, 6].view(-1)
roi_xyz = fg_roi_boxes3d[:, :, 0:3].view(-1, 3)
batch_anchors[:, :, 0:3] = 0
rcnn_boxes3d = self.box_coder.decode_torch(
fg_rcnn_reg.view(batch_anchors.shape[0], -1, code_size), batch_anchors
).view(-1, code_size)
rcnn_boxes3d = common_utils.rotate_points_along_z(
rcnn_boxes3d.unsqueeze(dim=1), roi_ry
).squeeze(dim=1)
rcnn_boxes3d[:, 0:3] += roi_xyz
corner_loss_func = loss_utils.get_corner_loss_lidar
loss_corner = corner_loss_func(
rcnn_boxes3d[:, 0:7],
gt_of_rois_src[fg_mask][:, 0:7])
loss_corner = loss_corner.mean()
loss_corner = loss_corner * loss_cfgs.LOSS_WEIGHTS['rcnn_corner_weight']
rcnn_loss_reg += loss_corner
tb_dict['rcnn_loss_corner'] = loss_corner.item()
else:
raise NotImplementedError
return rcnn_loss_reg, tb_dict
def get_box_cls_layer_loss(self, forward_ret_dict):
loss_cfgs = self.model_cfg.LOSS_CONFIG
rcnn_cls = forward_ret_dict['rcnn_cls']
rcnn_cls_labels = forward_ret_dict['rcnn_cls_labels'].view(-1)
if loss_cfgs.CLS_LOSS == 'BinaryCrossEntropy':
rcnn_cls_flat = rcnn_cls.view(-1)
groups = rcnn_cls_flat.shape[0] // rcnn_cls_labels.shape[0]
if groups != 1:
rcnn_loss_cls = 0
slice = rcnn_cls_labels.shape[0]
for i in range(groups):
batch_loss_cls = F.binary_cross_entropy(torch.sigmoid(rcnn_cls_flat[i*slice:(i+1)*slice]),
rcnn_cls_labels.float(), reduction='none')
cls_valid_mask = (rcnn_cls_labels >= 0).float()
rcnn_loss_cls = rcnn_loss_cls + (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
rcnn_loss_cls = rcnn_loss_cls / groups
else:
batch_loss_cls = F.binary_cross_entropy(torch.sigmoid(rcnn_cls_flat), rcnn_cls_labels.float(), reduction='none')
cls_valid_mask = (rcnn_cls_labels >= 0).float()
rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
elif loss_cfgs.CLS_LOSS == 'CrossEntropy':
batch_loss_cls = F.cross_entropy(rcnn_cls, rcnn_cls_labels, reduction='none', ignore_index=-1)
cls_valid_mask = (rcnn_cls_labels >= 0).float()
rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0)
else:
raise NotImplementedError
rcnn_loss_cls = rcnn_loss_cls * loss_cfgs.LOSS_WEIGHTS['rcnn_cls_weight']
tb_dict = {'rcnn_loss_cls': rcnn_loss_cls.item()}
return rcnn_loss_cls, tb_dict
def generate_predicted_boxes(self, batch_size, rois, cls_preds=None, box_preds=None):
"""
Args:
batch_size:
rois: (B, N, 7)
cls_preds: (BN, num_class)
box_preds: (BN, code_size)
Returns:
"""
code_size = self.box_coder.code_size
if cls_preds is not None:
batch_cls_preds = cls_preds.view(batch_size, -1, cls_preds.shape[-1])
else:
batch_cls_preds = None
batch_box_preds = box_preds.view(batch_size, -1, code_size)
roi_ry = rois[:, :, 6].view(-1)
roi_xyz = rois[:, :, 0:3].view(-1, 3)
local_rois = rois.clone().detach()
local_rois[:, :, 0:3] = 0
batch_box_preds = self.box_coder.decode_torch(batch_box_preds, local_rois).view(-1, code_size)
batch_box_preds = common_utils.rotate_points_along_z(
batch_box_preds.unsqueeze(dim=1), roi_ry
).squeeze(dim=1)
batch_box_preds[:, 0:3] += roi_xyz
batch_box_preds = batch_box_preds.view(batch_size, -1, code_size)
batch_box_preds = torch.cat([batch_box_preds,rois[:,:,7:]],-1)
return batch_cls_preds, batch_box_preds