Add File
This commit is contained in:
68
tools/train_utils/optimization/__init__.py
Normal file
68
tools/train_utils/optimization/__init__.py
Normal file
@@ -0,0 +1,68 @@
|
||||
from functools import partial
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.optim.lr_scheduler as lr_sched
|
||||
|
||||
from .fastai_optim import OptimWrapper
|
||||
from .learning_schedules_fastai import CosineWarmupLR, OneCycle, CosineAnnealing
|
||||
|
||||
|
||||
def build_optimizer(model, optim_cfg):
|
||||
if optim_cfg.OPTIMIZER == 'adam':
|
||||
optimizer = optim.Adam(model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY)
|
||||
elif optim_cfg.OPTIMIZER == 'sgd':
|
||||
optimizer = optim.SGD(
|
||||
model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY,
|
||||
momentum=optim_cfg.MOMENTUM
|
||||
)
|
||||
elif optim_cfg.OPTIMIZER in ['adam_onecycle','adam_cosineanneal']:
|
||||
def children(m: nn.Module):
|
||||
return list(m.children())
|
||||
|
||||
def num_children(m: nn.Module) -> int:
|
||||
return len(children(m))
|
||||
|
||||
flatten_model = lambda m: sum(map(flatten_model, m.children()), []) if num_children(m) else [m]
|
||||
get_layer_groups = lambda m: [nn.Sequential(*flatten_model(m))]
|
||||
betas = optim_cfg.get('BETAS', (0.9, 0.99))
|
||||
betas = tuple(betas)
|
||||
optimizer_func = partial(optim.Adam, betas=betas)
|
||||
optimizer = OptimWrapper.create(
|
||||
optimizer_func, 3e-3, get_layer_groups(model), wd=optim_cfg.WEIGHT_DECAY, true_wd=True, bn_wd=True
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def build_scheduler(optimizer, total_iters_each_epoch, total_epochs, last_epoch, optim_cfg):
|
||||
decay_steps = [x * total_iters_each_epoch for x in optim_cfg.DECAY_STEP_LIST]
|
||||
def lr_lbmd(cur_epoch):
|
||||
cur_decay = 1
|
||||
for decay_step in decay_steps:
|
||||
if cur_epoch >= decay_step:
|
||||
cur_decay = cur_decay * optim_cfg.LR_DECAY
|
||||
return max(cur_decay, optim_cfg.LR_CLIP / optim_cfg.LR)
|
||||
|
||||
lr_warmup_scheduler = None
|
||||
total_steps = total_iters_each_epoch * total_epochs
|
||||
if optim_cfg.OPTIMIZER == 'adam_onecycle':
|
||||
lr_scheduler = OneCycle(
|
||||
optimizer, total_steps, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.DIV_FACTOR, optim_cfg.PCT_START
|
||||
)
|
||||
elif optim_cfg.OPTIMIZER == 'adam_cosineanneal':
|
||||
lr_scheduler = CosineAnnealing(
|
||||
optimizer, total_steps, total_epochs, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.PCT_START, optim_cfg.WARMUP_ITER
|
||||
)
|
||||
else:
|
||||
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd, last_epoch=last_epoch)
|
||||
|
||||
if optim_cfg.LR_WARMUP:
|
||||
lr_warmup_scheduler = CosineWarmupLR(
|
||||
optimizer, T_max=optim_cfg.WARMUP_EPOCH * len(total_iters_each_epoch),
|
||||
eta_min=optim_cfg.LR / optim_cfg.DIV_FACTOR
|
||||
)
|
||||
|
||||
return lr_scheduler, lr_warmup_scheduler
|
||||
Reference in New Issue
Block a user