This commit is contained in:
2025-09-21 20:19:02 +08:00
parent 9090353f9f
commit 1214bf1668

View File

@@ -0,0 +1,179 @@
import torch
import torch.nn as nn
from ...ops.pointnet2.pointnet2_batch import pointnet2_modules
from ...ops.roipoint_pool3d import roipoint_pool3d_utils
from ...utils import common_utils
from .roi_head_template import RoIHeadTemplate
class PointRCNNHead(RoIHeadTemplate):
def __init__(self, input_channels, model_cfg, num_class=1, **kwargs):
super().__init__(num_class=num_class, model_cfg=model_cfg)
self.model_cfg = model_cfg
use_bn = self.model_cfg.USE_BN
self.SA_modules = nn.ModuleList()
channel_in = input_channels
self.num_prefix_channels = 3 + 2 # xyz + point_scores + point_depth
xyz_mlps = [self.num_prefix_channels] + self.model_cfg.XYZ_UP_LAYER
shared_mlps = []
for k in range(len(xyz_mlps) - 1):
shared_mlps.append(nn.Conv2d(xyz_mlps[k], xyz_mlps[k + 1], kernel_size=1, bias=not use_bn))
if use_bn:
shared_mlps.append(nn.BatchNorm2d(xyz_mlps[k + 1]))
shared_mlps.append(nn.ReLU())
self.xyz_up_layer = nn.Sequential(*shared_mlps)
c_out = self.model_cfg.XYZ_UP_LAYER[-1]
self.merge_down_layer = nn.Sequential(
nn.Conv2d(c_out * 2, c_out, kernel_size=1, bias=not use_bn),
*[nn.BatchNorm2d(c_out), nn.ReLU()] if use_bn else [nn.ReLU()]
)
for k in range(self.model_cfg.SA_CONFIG.NPOINTS.__len__()):
mlps = [channel_in] + self.model_cfg.SA_CONFIG.MLPS[k]
npoint = self.model_cfg.SA_CONFIG.NPOINTS[k] if self.model_cfg.SA_CONFIG.NPOINTS[k] != -1 else None
self.SA_modules.append(
pointnet2_modules.PointnetSAModule(
npoint=npoint,
radius=self.model_cfg.SA_CONFIG.RADIUS[k],
nsample=self.model_cfg.SA_CONFIG.NSAMPLE[k],
mlp=mlps,
use_xyz=True,
bn=use_bn
)
)
channel_in = mlps[-1]
self.cls_layers = self.make_fc_layers(
input_channels=channel_in, output_channels=self.num_class, fc_list=self.model_cfg.CLS_FC
)
self.reg_layers = self.make_fc_layers(
input_channels=channel_in,
output_channels=self.box_coder.code_size * self.num_class,
fc_list=self.model_cfg.REG_FC
)
self.roipoint_pool3d_layer = roipoint_pool3d_utils.RoIPointPool3d(
num_sampled_points=self.model_cfg.ROI_POINT_POOL.NUM_SAMPLED_POINTS,
pool_extra_width=self.model_cfg.ROI_POINT_POOL.POOL_EXTRA_WIDTH
)
self.init_weights(weight_init='xavier')
def init_weights(self, weight_init='xavier'):
if weight_init == 'kaiming':
init_func = nn.init.kaiming_normal_
elif weight_init == 'xavier':
init_func = nn.init.xavier_normal_
elif weight_init == 'normal':
init_func = nn.init.normal_
else:
raise NotImplementedError
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d):
if weight_init == 'normal':
init_func(m.weight, mean=0, std=0.001)
else:
init_func(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
nn.init.normal_(self.reg_layers[-1].weight, mean=0, std=0.001)
def roipool3d_gpu(self, batch_dict):
"""
Args:
batch_dict:
batch_size:
rois: (B, num_rois, 7 + C)
point_coords: (num_points, 4) [bs_idx, x, y, z]
point_features: (num_points, C)
point_cls_scores: (N1 + N2 + N3 + ..., 1)
point_part_offset: (N1 + N2 + N3 + ..., 3)
Returns:
"""
batch_size = batch_dict['batch_size']
batch_idx = batch_dict['point_coords'][:, 0]
point_coords = batch_dict['point_coords'][:, 1:4]
point_features = batch_dict['point_features']
rois = batch_dict['rois'] # (B, num_rois, 7 + C)
batch_cnt = point_coords.new_zeros(batch_size).int()
for bs_idx in range(batch_size):
batch_cnt[bs_idx] = (batch_idx == bs_idx).sum()
assert batch_cnt.min() == batch_cnt.max()
point_scores = batch_dict['point_cls_scores'].detach()
point_depths = point_coords.norm(dim=1) / self.model_cfg.ROI_POINT_POOL.DEPTH_NORMALIZER - 0.5
point_features_list = [point_scores[:, None], point_depths[:, None], point_features]
point_features_all = torch.cat(point_features_list, dim=1)
batch_points = point_coords.view(batch_size, -1, 3)
batch_point_features = point_features_all.view(batch_size, -1, point_features_all.shape[-1])
with torch.no_grad():
pooled_features, pooled_empty_flag = self.roipoint_pool3d_layer(
batch_points, batch_point_features, rois
) # pooled_features: (B, num_rois, num_sampled_points, 3 + C), pooled_empty_flag: (B, num_rois)
# canonical transformation
roi_center = rois[:, :, 0:3]
pooled_features[:, :, :, 0:3] -= roi_center.unsqueeze(dim=2)
pooled_features = pooled_features.view(-1, pooled_features.shape[-2], pooled_features.shape[-1])
pooled_features[:, :, 0:3] = common_utils.rotate_points_along_z(
pooled_features[:, :, 0:3], -rois.view(-1, rois.shape[-1])[:, 6]
)
pooled_features[pooled_empty_flag.view(-1) > 0] = 0
return pooled_features
def forward(self, batch_dict):
"""
Args:
batch_dict:
Returns:
"""
targets_dict = self.proposal_layer(
batch_dict, nms_config=self.model_cfg.NMS_CONFIG['TRAIN' if self.training else 'TEST']
)
if self.training:
targets_dict = self.assign_targets(batch_dict)
batch_dict['rois'] = targets_dict['rois']
batch_dict['roi_labels'] = targets_dict['roi_labels']
pooled_features = self.roipool3d_gpu(batch_dict) # (total_rois, num_sampled_points, 3 + C)
xyz_input = pooled_features[..., 0:self.num_prefix_channels].transpose(1, 2).unsqueeze(dim=3).contiguous()
xyz_features = self.xyz_up_layer(xyz_input)
point_features = pooled_features[..., self.num_prefix_channels:].transpose(1, 2).unsqueeze(dim=3)
merged_features = torch.cat((xyz_features, point_features), dim=1)
merged_features = self.merge_down_layer(merged_features)
l_xyz, l_features = [pooled_features[..., 0:3].contiguous()], [merged_features.squeeze(dim=3).contiguous()]
for i in range(len(self.SA_modules)):
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
l_xyz.append(li_xyz)
l_features.append(li_features)
shared_features = l_features[-1] # (total_rois, num_features, 1)
rcnn_cls = self.cls_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, 1 or 2)
rcnn_reg = self.reg_layers(shared_features).transpose(1, 2).contiguous().squeeze(dim=1) # (B, C)
if not self.training:
batch_cls_preds, batch_box_preds = self.generate_predicted_boxes(
batch_size=batch_dict['batch_size'], rois=batch_dict['rois'], cls_preds=rcnn_cls, box_preds=rcnn_reg
)
batch_dict['batch_cls_preds'] = batch_cls_preds
batch_dict['batch_box_preds'] = batch_box_preds
batch_dict['cls_preds_normalized'] = False
else:
targets_dict['rcnn_cls'] = rcnn_cls
targets_dict['rcnn_reg'] = rcnn_reg
self.forward_ret_dict = targets_dict
return batch_dict