Files
OpenPCDet/pcdet/models/model_utils/transfusion_utils.py

103 lines
3.8 KiB
Python
Raw Normal View History

2025-09-21 20:18:50 +08:00
import torch
from torch import nn
import torch.nn.functional as F
def clip_sigmoid(x, eps=1e-4):
y = torch.clamp(x.sigmoid_(), min=eps, max=1 - eps)
return y
class PositionEmbeddingLearned(nn.Module):
"""
Absolute pos embedding, learned.
"""
def __init__(self, input_channel, num_pos_feats=288):
super().__init__()
self.position_embedding_head = nn.Sequential(
nn.Conv1d(input_channel, num_pos_feats, kernel_size=1),
nn.BatchNorm1d(num_pos_feats),
nn.ReLU(inplace=True),
nn.Conv1d(num_pos_feats, num_pos_feats, kernel_size=1))
def forward(self, xyz):
xyz = xyz.transpose(1, 2).contiguous()
position_embedding = self.position_embedding_head(xyz)
return position_embedding
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
self_posembed=None, cross_posembed=None, cross_only=False):
super().__init__()
self.cross_only = cross_only
if not self.cross_only:
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
self.activation = _get_activation_fn(activation)
self.self_posembed = self_posembed
self.cross_posembed = cross_posembed
def with_pos_embed(self, tensor, pos_embed):
return tensor if pos_embed is None else tensor + pos_embed
def forward(self, query, key, query_pos, key_pos, key_padding_mask=None, attn_mask=None):
# NxCxP to PxNxC
if self.self_posembed is not None:
query_pos_embed = self.self_posembed(query_pos).permute(2, 0, 1)
else:
query_pos_embed = None
if self.cross_posembed is not None:
key_pos_embed = self.cross_posembed(key_pos).permute(2, 0, 1)
else:
key_pos_embed = None
query = query.permute(2, 0, 1)
key = key.permute(2, 0, 1)
if not self.cross_only:
q = k = v = self.with_pos_embed(query, query_pos_embed)
query2 = self.self_attn(q, k, value=v)[0]
query = query + self.dropout1(query2)
query = self.norm1(query)
query2 = self.multihead_attn(query=self.with_pos_embed(query, query_pos_embed),
key=self.with_pos_embed(key, key_pos_embed),
value=self.with_pos_embed(key, key_pos_embed),
key_padding_mask=key_padding_mask, attn_mask=attn_mask)[0]
query = query + self.dropout2(query2)
query = self.norm2(query)
query2 = self.linear2(self.dropout(self.activation(self.linear1(query))))
query = query + self.dropout3(query2)
query = self.norm3(query)
# NxCxP to PxNxC
query = query.permute(1, 2, 0)
return query