Files
OpenPCDet/pcdet/utils/common_utils.py

296 lines
8.4 KiB
Python
Raw Normal View History

2025-09-21 20:19:29 +08:00
import logging
import os
import pickle
import random
import shutil
import subprocess
import SharedArray
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
def check_numpy_to_torch(x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x).float(), True
return x, False
def limit_period(val, offset=0.5, period=np.pi):
val, is_numpy = check_numpy_to_torch(val)
ans = val - torch.floor(val / period + offset) * period
return ans.numpy() if is_numpy else ans
def drop_info_with_name(info, name):
ret_info = {}
keep_indices = [i for i, x in enumerate(info['name']) if x != name]
for key in info.keys():
ret_info[key] = info[key][keep_indices]
return ret_info
def rotate_points_along_z(points, angle):
"""
Args:
points: (B, N, 3 + C)
angle: (B), angle along z-axis, angle increases x ==> y
Returns:
"""
points, is_numpy = check_numpy_to_torch(points)
angle, _ = check_numpy_to_torch(angle)
cosa = torch.cos(angle)
sina = torch.sin(angle)
zeros = angle.new_zeros(points.shape[0])
ones = angle.new_ones(points.shape[0])
rot_matrix = torch.stack((
cosa, sina, zeros,
-sina, cosa, zeros,
zeros, zeros, ones
), dim=1).view(-1, 3, 3).float()
points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
return points_rot.numpy() if is_numpy else points_rot
def angle2matrix(angle):
"""
Args:
angle: angle along z-axis, angle increases x ==> y
Returns:
rot_matrix: (3x3 Tensor) rotation matrix
"""
cosa = torch.cos(angle)
sina = torch.sin(angle)
rot_matrix = torch.tensor([
[cosa, -sina, 0],
[sina, cosa, 0],
[ 0, 0, 1]
])
return rot_matrix
def mask_points_by_range(points, limit_range):
mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \
& (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4])
return mask
def get_voxel_centers(voxel_coords, downsample_times, voxel_size, point_cloud_range):
"""
Args:
voxel_coords: (N, 3)
downsample_times:
voxel_size:
point_cloud_range:
Returns:
"""
assert voxel_coords.shape[1] == 3
voxel_centers = voxel_coords[:, [2, 1, 0]].float() # (xyz)
voxel_size = torch.tensor(voxel_size, device=voxel_centers.device).float() * downsample_times
pc_range = torch.tensor(point_cloud_range[0:3], device=voxel_centers.device).float()
voxel_centers = (voxel_centers + 0.5) * voxel_size + pc_range
return voxel_centers
def create_logger(log_file=None, rank=0, log_level=logging.INFO):
logger = logging.getLogger(__name__)
logger.setLevel(log_level if rank == 0 else 'ERROR')
formatter = logging.Formatter('%(asctime)s %(levelname)5s %(message)s')
console = logging.StreamHandler()
console.setLevel(log_level if rank == 0 else 'ERROR')
console.setFormatter(formatter)
logger.addHandler(console)
if log_file is not None:
file_handler = logging.FileHandler(filename=log_file)
file_handler.setLevel(log_level if rank == 0 else 'ERROR')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.propagate = False
return logger
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def worker_init_fn(worker_id, seed=666):
if seed is not None:
random.seed(seed + worker_id)
np.random.seed(seed + worker_id)
torch.manual_seed(seed + worker_id)
torch.cuda.manual_seed(seed + worker_id)
torch.cuda.manual_seed_all(seed + worker_id)
def get_pad_params(desired_size, cur_size):
"""
Get padding parameters for np.pad function
Args:
desired_size: int, Desired padded output size
cur_size: int, Current size. Should always be less than or equal to cur_size
Returns:
pad_params: tuple(int), Number of values padded to the edges (before, after)
"""
assert desired_size >= cur_size
# Calculate amount to pad
diff = desired_size - cur_size
pad_params = (0, diff)
return pad_params
def keep_arrays_by_name(gt_names, used_classes):
inds = [i for i, x in enumerate(gt_names) if x in used_classes]
inds = np.array(inds, dtype=np.int64)
return inds
def init_dist_slurm(tcp_port, local_rank, backend='nccl'):
"""
modified from https://github.com/open-mmlab/mmdetection
Args:
tcp_port:
backend:
Returns:
"""
proc_id = int(os.environ['SLURM_PROCID'])
ntasks = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(proc_id % num_gpus)
addr = subprocess.getoutput('scontrol show hostname {} | head -n1'.format(node_list))
os.environ['MASTER_PORT'] = str(tcp_port)
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(ntasks)
os.environ['RANK'] = str(proc_id)
dist.init_process_group(backend=backend)
total_gpus = dist.get_world_size()
rank = dist.get_rank()
return total_gpus, rank
def init_dist_pytorch(tcp_port, local_rank, backend='nccl'):
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
# os.environ['MASTER_PORT'] = str(tcp_port)
# os.environ['MASTER_ADDR'] = 'localhost'
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(local_rank % num_gpus)
dist.init_process_group(
backend=backend,
# init_method='tcp://127.0.0.1:%d' % tcp_port,
# rank=local_rank,
# world_size=num_gpus
)
rank = dist.get_rank()
return num_gpus, rank
def get_dist_info(return_gpu_per_machine=False):
if torch.__version__ < '1.0':
initialized = dist._initialized
else:
if dist.is_available():
initialized = dist.is_initialized()
else:
initialized = False
if initialized:
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
if return_gpu_per_machine:
gpu_per_machine = torch.cuda.device_count()
return rank, world_size, gpu_per_machine
return rank, world_size
def merge_results_dist(result_part, size, tmpdir):
rank, world_size = get_dist_info()
os.makedirs(tmpdir, exist_ok=True)
dist.barrier()
pickle.dump(result_part, open(os.path.join(tmpdir, 'result_part_{}.pkl'.format(rank)), 'wb'))
dist.barrier()
if rank != 0:
return None
part_list = []
for i in range(world_size):
part_file = os.path.join(tmpdir, 'result_part_{}.pkl'.format(i))
part_list.append(pickle.load(open(part_file, 'rb')))
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
ordered_results = ordered_results[:size]
shutil.rmtree(tmpdir)
return ordered_results
def scatter_point_inds(indices, point_inds, shape):
ret = -1 * torch.ones(*shape, dtype=point_inds.dtype, device=point_inds.device)
ndim = indices.shape[-1]
flattened_indices = indices.view(-1, ndim)
slices = [flattened_indices[:, i] for i in range(ndim)]
ret[slices] = point_inds
return ret
def generate_voxel2pinds(sparse_tensor):
device = sparse_tensor.indices.device
batch_size = sparse_tensor.batch_size
spatial_shape = sparse_tensor.spatial_shape
indices = sparse_tensor.indices.long()
point_indices = torch.arange(indices.shape[0], device=device, dtype=torch.int32)
output_shape = [batch_size] + list(spatial_shape)
v2pinds_tensor = scatter_point_inds(indices, point_indices, output_shape)
return v2pinds_tensor
def sa_create(name, var):
x = SharedArray.create(name, var.shape, dtype=var.dtype)
x[...] = var[...]
x.flags.writeable = False
return x
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count