Files
OpenPCDet/pcdet/models/model_utils/model_nms_utils.py

108 lines
3.8 KiB
Python
Raw Normal View History

2025-09-21 20:18:50 +08:00
import torch
from ...ops.iou3d_nms import iou3d_nms_utils
def class_agnostic_nms(box_scores, box_preds, nms_config, score_thresh=None):
src_box_scores = box_scores
if score_thresh is not None:
scores_mask = (box_scores >= score_thresh)
box_scores = box_scores[scores_mask]
box_preds = box_preds[scores_mask]
selected = []
if box_scores.shape[0] > 0:
box_scores_nms, indices = torch.topk(box_scores, k=min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0]))
boxes_for_nms = box_preds[indices]
keep_idx, selected_scores = getattr(iou3d_nms_utils, nms_config.NMS_TYPE)(
boxes_for_nms[:, 0:7], box_scores_nms, nms_config.NMS_THRESH, **nms_config
)
selected = indices[keep_idx[:nms_config.NMS_POST_MAXSIZE]]
if score_thresh is not None:
original_idxs = scores_mask.nonzero().view(-1)
selected = original_idxs[selected]
return selected, src_box_scores[selected]
def multi_classes_nms(cls_scores, box_preds, nms_config, score_thresh=None):
"""
Args:
cls_scores: (N, num_class)
box_preds: (N, 7 + C)
nms_config:
score_thresh:
Returns:
"""
pred_scores, pred_labels, pred_boxes = [], [], []
for k in range(cls_scores.shape[1]):
if score_thresh is not None:
scores_mask = (cls_scores[:, k] >= score_thresh)
box_scores = cls_scores[scores_mask, k]
cur_box_preds = box_preds[scores_mask]
else:
box_scores = cls_scores[:, k]
cur_box_preds = box_preds
selected = []
if box_scores.shape[0] > 0:
box_scores_nms, indices = torch.topk(box_scores, k=min(nms_config.NMS_PRE_MAXSIZE, box_scores.shape[0]))
boxes_for_nms = cur_box_preds[indices]
keep_idx, selected_scores = getattr(iou3d_nms_utils, nms_config.NMS_TYPE)(
boxes_for_nms[:, 0:7], box_scores_nms, nms_config.NMS_THRESH, **nms_config
)
selected = indices[keep_idx[:nms_config.NMS_POST_MAXSIZE]]
pred_scores.append(box_scores[selected])
pred_labels.append(box_scores.new_ones(len(selected)).long() * k)
pred_boxes.append(cur_box_preds[selected])
pred_scores = torch.cat(pred_scores, dim=0)
pred_labels = torch.cat(pred_labels, dim=0)
pred_boxes = torch.cat(pred_boxes, dim=0)
return pred_scores, pred_labels, pred_boxes
def class_specific_nms(box_scores, box_preds, box_labels, nms_config, score_thresh=None):
"""
Args:
cls_scores: (N,)
box_preds: (N, 7 + C)
box_labels: (N,)
nms_config:
Returns:
"""
selected = []
for k in range(len(nms_config.NMS_THRESH)):
curr_mask = box_labels == k
if score_thresh is not None and isinstance(score_thresh, float):
curr_mask *= (box_scores > score_thresh)
elif score_thresh is not None and isinstance(score_thresh, list):
curr_mask *= (box_scores > score_thresh[k])
curr_idx = torch.nonzero(curr_mask)[:, 0]
curr_box_scores = box_scores[curr_mask]
cur_box_preds = box_preds[curr_mask]
if curr_box_scores.shape[0] > 0:
curr_box_scores_nms = curr_box_scores
curr_boxes_for_nms = cur_box_preds
keep_idx, _ = getattr(iou3d_nms_utils, 'nms_gpu')(
curr_boxes_for_nms, curr_box_scores_nms,
thresh=nms_config.NMS_THRESH[k],
pre_maxsize=nms_config.NMS_PRE_MAXSIZE[k],
post_max_size=nms_config.NMS_POST_MAXSIZE[k]
)
curr_selected = curr_idx[keep_idx]
selected.append(curr_selected)
if len(selected) != 0:
selected = torch.cat(selected)
return selected, box_scores[selected]