Files
OpenPCDet/tools/train_utils/optimization/__init__.py

69 lines
2.7 KiB
Python
Raw Normal View History

2025-09-21 20:19:58 +08:00
from functools import partial
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
from .fastai_optim import OptimWrapper
from .learning_schedules_fastai import CosineWarmupLR, OneCycle, CosineAnnealing
def build_optimizer(model, optim_cfg):
if optim_cfg.OPTIMIZER == 'adam':
optimizer = optim.Adam(model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY)
elif optim_cfg.OPTIMIZER == 'sgd':
optimizer = optim.SGD(
model.parameters(), lr=optim_cfg.LR, weight_decay=optim_cfg.WEIGHT_DECAY,
momentum=optim_cfg.MOMENTUM
)
elif optim_cfg.OPTIMIZER in ['adam_onecycle','adam_cosineanneal']:
def children(m: nn.Module):
return list(m.children())
def num_children(m: nn.Module) -> int:
return len(children(m))
flatten_model = lambda m: sum(map(flatten_model, m.children()), []) if num_children(m) else [m]
get_layer_groups = lambda m: [nn.Sequential(*flatten_model(m))]
betas = optim_cfg.get('BETAS', (0.9, 0.99))
betas = tuple(betas)
optimizer_func = partial(optim.Adam, betas=betas)
optimizer = OptimWrapper.create(
optimizer_func, 3e-3, get_layer_groups(model), wd=optim_cfg.WEIGHT_DECAY, true_wd=True, bn_wd=True
)
else:
raise NotImplementedError
return optimizer
def build_scheduler(optimizer, total_iters_each_epoch, total_epochs, last_epoch, optim_cfg):
decay_steps = [x * total_iters_each_epoch for x in optim_cfg.DECAY_STEP_LIST]
def lr_lbmd(cur_epoch):
cur_decay = 1
for decay_step in decay_steps:
if cur_epoch >= decay_step:
cur_decay = cur_decay * optim_cfg.LR_DECAY
return max(cur_decay, optim_cfg.LR_CLIP / optim_cfg.LR)
lr_warmup_scheduler = None
total_steps = total_iters_each_epoch * total_epochs
if optim_cfg.OPTIMIZER == 'adam_onecycle':
lr_scheduler = OneCycle(
optimizer, total_steps, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.DIV_FACTOR, optim_cfg.PCT_START
)
elif optim_cfg.OPTIMIZER == 'adam_cosineanneal':
lr_scheduler = CosineAnnealing(
optimizer, total_steps, total_epochs, optim_cfg.LR, list(optim_cfg.MOMS), optim_cfg.PCT_START, optim_cfg.WARMUP_ITER
)
else:
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd, last_epoch=last_epoch)
if optim_cfg.LR_WARMUP:
lr_warmup_scheduler = CosineWarmupLR(
optimizer, T_max=optim_cfg.WARMUP_EPOCH * len(total_iters_each_epoch),
eta_min=optim_cfg.LR / optim_cfg.DIV_FACTOR
)
return lr_scheduler, lr_warmup_scheduler