# Awesome Monocular 3D Detection Paper list of 3D detetction, keep updating! ## Contents - [Paper List](#Paper-List) - [2024](#2024) - [2023](#2023) - [2022](#2022) - [2021](#2021) - [2020](#2020) - [2019](#2019) - [2018](#2018) - [2017](#2017) - [2016](#2016) - [KITTI Results](#KITTI-Results) # Paper List ## 2024 - **[MonoWAD]** MonoWAD: Weather-Adaptive Diffusion Model for Robust Monocular 3D Object Detection [[ECCV2024](https://arxiv.org/pdf/2407.16448)][[Pytorch](https://github.com/VisualAIKHU/MonoWAD)] - **[MonoTTA]** Fully Test-Time Adaptation for Monocular 3D Object Detection [[ECCV2024](https://arxiv.org/pdf/2405.19682)][[Pytorch](https://github.com/Hongbin98/MonoTTA)] - **[MonoMAE]** MonoMAE: Enhancing Monocular 3D Detection through Depth-Aware Masked Autoencoders [[NeurIPS2024](https://arxiv.org/pdf/2405.07696)] - **[OVM3D]** Training an Open-Vocabulary Monocular 3D Object Detection Model without 3D Data [[NeurIPS2024](https://arxiv.org/pdf/2411.15657)] - **[MonoCD]** MonoCD: Monocular 3D Object Detection with Complementary Depths [[CVPR2024](https://arxiv.org/pdf/2404.03181)][[Pytorch](https://github.com/elvintanhust/MonoCD)] - **[DPL]** Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection [[CVPR2024](https://arxiv.org/pdf/2403.17387)] - **[UniMODE]** UniMODE: Unified Monocular 3D Object Detection [[CVPR2024](https://arxiv.org/pdf/2402.18573)] - **[YOLOBU]** You Only Look Bottom-Up for Monocular 3D Object Detection [[RA-L2024](https://arxiv.org/pdf/2401.15319)] ## 2023 - **[DDML]** Depth-discriminative Metric Learning for Monocular 3D Object Detection [[NeurIPS2023](https://arxiv.org/pdf/2401.01075.pdf)] - **[MonoXiver]** Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver [[ICCV2023](https://arxiv.org/pdf/2304.01289.pdf)] - **[MonoNeRD]** MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection [[ICCV2023](https://arxiv.org/pdf/2308.09421.pdf)][[Pytorch](https://github.com/cskkxjk/MonoNeRD)] - **[MonoATT]** MonoATT: Online Monocular 3D Object Detection with Adaptive Token Transformer [[CVPR2023](https://arxiv.org/abs/2303.13018)] - **[WeakMono3D]** Weakly Supervised Monocular 3D Object Detection using Multi-View Projection and Direction Consistency [[CVPR2023](https://arxiv.org/pdf/2303.08686.pdf)] - **[MonoPGC]** MonoPGC: Monocular 3D Object Detection with Pixel Geometry Contexts [[ICRA2023](https://arxiv.org/pdf/2302.10549.pdf)] - **[ADD]** Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection[[AAAI2023](https://arxiv.org/pdf/2211.16779.pdf)] ## 2022 - **[MoGDE]** MoGDE: Boosting Mobile Monocular 3D Object Detection with Ground Depth Estimation [[NeurIPS2022](https://arxiv.org/abs/2303.13561)] - **[LPCG]** Lidar Point Cloud Guided Monocular 3D Object Detection [[ECCV2022](https://arxiv.org/abs/2104.09035)][[Pytorch](https://github.com/SPengLiang/LPCG)] - **[MVC-MonoDet]** Semi-Supervised Monocular 3D Object Detection by Multi-View Consistency [[ECCV2022](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136680702.pdf)][[Pytorch](https://github.com/lianqing11/mvc_monodet)] - **[CMKD]** Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection [[ECCV2022](https://arxiv.org/abs/2211.07171)][[Pytorch](https://github.com/Cc-Hy/CMKD)] - **[DfM]** Monocular 3D Object Detection with Depth from Motion [[ECCV2022](https://arxiv.org/pdf/2207.12988.pdf)][[Pytorch](https://github.com/Tai-Wang/Depth-from-Motion)] - **[DEVIANT]** DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection [[ECCV2022](https://arxiv.org/pdf/2207.10758.pdf)][[Pytorch](https://github.com/abhi1kumar/DEVIANT)] - **[DCD]** Densely Constrained Depth Estimator for Monocular 3D Object Detection [[ECCV2022](https://arxiv.org/pdf/2207.10047.pdf)][[Pytorch](https://github.com/BraveGroup/DCD)] - **[STMono3D]** Unsupervised Domain Adaptation for Monocular 3D Object Detection via Self-Training [[ECCV2022](https://arxiv.org/pdf/2204.11590.pdf)] - **[DID-M3D]** DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection [[ECCV2022](https://arxiv.org/pdf/2207.08531.pdf)][[Pytorch](https://github.com/SPengLiang/DID-M3D)] - **[SGM3D]** SGM3D: Stereo Guided Monocular 3D Object Detection [[RA-L2022](https://arxiv.org/pdf/2112.01914.pdf)][[Pytorch](https://github.com/zhouzheyuan/sgm3d)] - **[PRT]** Depth Estimation Matters Most: Improving Per-Object Depth Estimation for Monocular 3D Detection and Tracking [[ICRA2022](https://arxiv.org/pdf/2206.03666.pdf)] - **[Time3D]** Time3D: End-to-End Joint Monocular 3D Object Detection and Tracking for Autonomous Driving [[CVPR2022](https://arxiv.org/pdf/2205.14882.pdf)] - **[MonoGround]** MonoGround: Detecting Monocular 3D Objects from the Ground [[CVPR2022](https://arxiv.org/pdf/2206.07372.pdf)][[Pytorch](https://github.com/cfzd/MonoGround)] - **[DimEmbedding]** Dimension Embeddings for Monocular 3D Object Detection [[CVPR2022](https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_Dimension_Embeddings_for_Monocular_3D_Object_Detection_CVPR_2022_paper.pdf)] - **[GeoAug]** Exploring Geometric Consistency for Monocular 3D Object Detection [[CVPR2022](https://openaccess.thecvf.com/content/CVPR2022/papers/Lian_Exploring_Geometric_Consistency_for_Monocular_3D_Object_Detection_CVPR_2022_paper.pdf)] - **[MonoDDE]** Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection [[CVPR2022](https://arxiv.org/pdf/2205.09373.pdf)] - **[Homography]** Homography Loss for Monocular 3D Object Detection [[CVPR2022](https://arxiv.org/pdf/2204.00754.pdf)] - **[Rope3D]** Rope3D: TheRoadside Perception Dataset for Autonomous Driving and Monocular 3D Object Detection Task [[CVPR2022](https://arxiv.org/pdf/2203.13608.pdf)][[Pytorch](https://github.com/liyingying0113/rope3d-dataset-tools)] - **[MonoDTR]** MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer [[CVPR2022](https://arxiv.org/pdf/2203.10981.pdf)][[Pytorch](https://github.com/kuanchihhuang/MonoDTR)] - **[MonoJSG]** MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D Object Detection [[CVPR2022](https://arxiv.org/pdf/2203.08563.pdf)][[Pytorch](https://github.com/lianqing11/MonoJSG)] - **[Pseudo-Stereo]** Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving [[CVPR2022](https://arxiv.org/pdf/2203.02112.pdf)][[Pytorch](https://github.com/revisitq/Pseudo-Stereo-3D)] - **[MonoDistill]** MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [[ICLR2022](https://arxiv.org/pdf/2201.10830.pdf)][[Pytorch](https://github.com/monster-ghost/MonoDistill)] - **[WeakM3D]** WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection [[ICLR2022](https://openreview.net/pdf?id=ahi2XSHpAUZ)][[Pytorch](https://github.com/SPengLiang/WeakM3D)] - **[MonoCon]** Learning Auxiliary Monocular Contexts Helps Monocular 3D Object Detection [[AAAI2022](https://arxiv.org/pdf/2112.04628.pdf)][[Pytorch](https://github.com/Xianpeng919/MonoCon)] - **[ImVoxelNet]** ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection [[WACV2022](https://arxiv.org/pdf/2106.01178.pdf)][[Pytorch](https://github.com/saic-vul/imvoxelnet)] ## 2021 - **[PCT]** Progressive Coordinate Transforms for Monocular 3D Object Detection [[NeurIPS2021](https://arxiv.org/pdf/2108.05793.pdf)][[Pytorch](https://github.com/amazon-research/progressive-coordinate-transforms)] - **[DeepLineEncoding]** Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction [[BMVC2021](https://www.bmvc2021-virtualconference.com/assets/papers/0299.pdf)][[Pytorch](https://github.com/cnexah/DeepLineEncoding)] - **[DFR-Net]** The Devil Is in the Task: Exploiting Reciprocal Appearance-Localization Features for Monocular 3D Object Detection [[ICCV2021](https://openaccess.thecvf.com/content/ICCV2021/html/Zou_The_Devil_Is_in_the_Task_Exploiting_Reciprocal_Appearance-Localization_Features_ICCV_2021_paper.html)] - **[AutoShape]** AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [[ICCV2021](https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_AutoShape_Real-Time_Shape-Aware_Monocular_3D_Object_Detection_ICCV_2021_paper.pdf)][[Pytorch](https://github.com/zongdai/AutoShape)][[Paddle](https://github.com/zongdai/AutoShape)] - **[pseudo-analysis]** Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection? [[ICCV2021](https://openaccess.thecvf.com/content/ICCV2021/papers/Simonelli_Are_We_Missing_Confidence_in_Pseudo-LiDAR_Methods_for_Monocular_3D_ICCV_2021_paper.pdf)] - **[Gated3D]** Gated3D: Monocular 3D Object Detection From Temporal Illumination Cues [[ICCV2021](https://openaccess.thecvf.com/content/ICCV2021/papers/Julca-Aguilar_Gated3D_Monocular_3D_Object_Detection_From_Temporal_Illumination_Cues_ICCV_2021_paper.pdf)] - **[MonoRCNN]** Geometry-based Distance Decomposition for Monocular 3D Object Detection [[ICCV2021](https://arxiv.org/abs/2104.03775)][[Pytorch](https://github.com/Rock-100/MonoDet)] - **[DD3D]** Is Pseudo-Lidar needed for Monocular 3D Object detection [[ICCV2021](https://arxiv.org/pdf/2108.06417.pdf)][[Pytorch](https://github.com/tri-ml/dd3d)] - **[GUPNet]** Geometry Uncertainty Projection Network for Monocular 3D Object Detection [[ICCV2021](https://arxiv.org/pdf/2107.13774.pdf)][[Pytorch](https://github.com/SuperMHP/GUPNet)] - **[Neighbor-Vote]** Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting [[ACMMM2021](https://arxiv.org/pdf/2107.02493.pdf)][[Pytorch](https://github.com/cxmomo/Neighbor-Vote)] - **[MonoEF]** Monocular 3D Object Detection: An Extrinsic Parameter Free Approach [[CVPR2021](https://arxiv.org/abs/2106.15796?context=cs)][[Pytorch](https://github.com/ZhouYunsong-SJTU/MonoEF)] - **[monodle]** Delving into Localization Errors for Monocular 3D Object Detection [[CVPR2021](https://arxiv.org/abs/2103.16237)][[Pytorch](https://github.com/xinzhuma/monodle)] - **[Monoflex]** Objects are Different: Flexible Monocular 3D Object Detection [[CVPR2021](https://arxiv.org/abs/2104.02323)][[Pytorch](https://github.com/zhangyp15/MonoFlex)] - **[GrooMeD-NMS]** GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection [[CVPR2021](https://arxiv.org/abs/2103.17202)][[Pytorch](https://github.com/abhi1kumar/groomed_nms)] - **[DDMP-3D]** Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection [[CVPR2021](https://arxiv.org/abs/2103.16470)][[Pytorch](https://github.com/Willy0919/DDMP-3D)] - **[MonoRUn]** MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation [[CVPR2021](https://arxiv.org/abs/2103.12605)][[Pytorch](https://github.com/tjiiv-cprg/MonoRUn)] - **[M3DSSD]** M3DSSD: Monocular 3D Single Stage Object Detector [[CVPR2021](https://arxiv.org/abs/2103.13164)][[Pytorch](https://github.com/mumianyuxin/M3DSSD)] - **[CaDDN]** Categorical Depth Distribution Network for Monocular 3D Object Detection [[CVPR2021](https://arxiv.org/abs/2103.01100)][[Pytorch](https://github.com/TRAILab/CaDDN)] - **[visualDet3D]** Ground-aware Monocular 3D Object Detection for Autonomous Driving [[RA-L](https://arxiv.org/abs/2102.00690)][[Pytorch](https://github.com/Owen-Liuyuxuan/visualDet3D)] ## 2020 - **[UR3D]** Distance-Normalized Unified Representation for Monocular 3D Object Detection [[ECCV2020](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123740086.pdf)] - **[MonoDR]** Monocular Differentiable Rendering for Self-Supervised 3D Object Detection [[ECCV2020](https://arxiv.org/abs/2009.14524)] - **[DA-3Ddet]** Monocular 3d object detection via feature domain adaptation [[ECCV2020](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540018.pdf)] - **[MoVi-3D]** Towards generalization across depth for monocular 3d object detection [[ECCV2020](https://arxiv.org/abs/1912.08035)] - **[PatchNet]** Rethinking Pseudo-LiDAR Representation [[ECCV2020](https://arxiv.org/abs/2008.04582)][[Pytorch](https://github.com/xinzhuma/patchnet)] - **[RAR-Net]** Reinforced Axial Refinement Network for Monocular 3D Object Detection [[ECCV2020](https://arxiv.org/abs/2008.13748)] - **[kinematic3d]** Kinematic 3D Object Detection in Monocular Video [[ECCV2020](https://arxiv.org/abs/2007.09548)][[Pytorch](https://github.com/garrickbrazil/kinematic3d)] - **[RTM3D]** RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving [[ECCV2020](https://arxiv.org/abs/2001.03343)][[Pytorch](https://github.com/Banconxuan/RTM3D)] - **[SMOKE]** SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation [[CVPRW2020](https://arxiv.org/pdf/2002.10111.pdf)][[Pytorch](https://github.com/lzccccc/SMOKE)] - **[D4LCN]** Learning Depth-Guided Convolutions for Monocular 3D Object Detection [[CVPRW2020](https://arxiv.org/abs/1912.04799)][[Pytorch](https://github.com/dingmyu/D4LCN)] - **[MonoPair]** MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships [[CVPR2020](https://arxiv.org/abs/2003.00504)] - **[pseudo-LiDAR_e2e]** End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [[CVPR2020](https://arxiv.org/abs/2004.03080)][[Pytorch](https://github.com/mileyan/pseudo-LiDAR_e2e)] - **[Pseudo-LiDAR++]** Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving [[ICLR2020](https://arxiv.org/abs/1906.06310)][[Pytorch](https://github.com/mileyan/Pseudo_Lidar_V2)] - **[OACV]** Object-Aware Centroid Voting for Monocular 3D Object Detection [[IROS2020](https://arxiv.org/abs/2007.09836)] - **[MonoGRNet_v2]** Monocular 3D Object Detection via Geometric Reasoning on Keypoints [[VISIGRAPP2020](https://arxiv.org/abs/1905.05618)] - **[ForeSeE]** Task-Aware Monocular Depth Estimation for 3D Object Detection [[AAAI2020(oral)](https://arxiv.org/abs/1909.07701)][[Pytorch](https://github.com/WXinlong/ForeSeE)] - **[Decoupled-3D]** Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation [[AAAI2020](https://arxiv.org/abs/2002.01619)] ## 2019 - **[3d-vehicle-tracking]** Joint Monocular 3D Vehicle Detection and Tracking [[ICCV2019](https://arxiv.org/pdf/1811.10742.pdf)][[Pytorch](https://github.com/ucbdrive/3d-vehicle-tracking)] - **[MonoDIS]** Disentangling monocular 3d object detection [[ICCV2019](https://openaccess.thecvf.com/content_ICCV_2019/papers/Simonelli_Disentangling_Monocular_3D_Object_Detection_ICCV_2019_paper.pdf)] - **[AM3D]** Accurate Monocular Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving [[ICCV2019](https://arxiv.org/abs/1903.11444)] - **[M3D-RPN]** M3D-RPN: Monocular 3D Region Proposal Network for Object Detection [[ICCV2019(Oral)](https://arxiv.org/abs/1907.06038)][[Pytorch](https://github.com/garrickbrazil/M3D-RPN)] - **[MVRA]** Multi-View Reprojection Architecture for Orientation Estimation [[ICCVW2019](https://openaccess.thecvf.com/content_ICCVW_2019/papers/ADW/Choi_Multi-View_Reprojection_Architecture_for_Orientation_Estimation_ICCVW_2019_paper.pdf)] - **[Mono3DPLiDAR]** Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud [[ICCVW2019](https://arxiv.org/abs/1903.09847)] - **[MonoPSR]** Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction [[CVPR2019](https://arxiv.org/abs/1904.01690)][[Pytorch](https://github.com/kujason/monopsr)] - **[FQNet]** Deep fitting degree scoring network for monocular 3d object detection [[CVPR2019](https://arxiv.org/abs/1904.12681)] - **[ROI-10D]** ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape [[CVPR2019](https://arxiv.org/abs/1812.02781)] - **[GS3D]** GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving [[CVPR2019](https://openaccess.thecvf.com/content_CVPR_2019/html/Li_GS3D_An_Efficient_3D_Object_Detection_Framework_for_Autonomous_Driving_CVPR_2019_paper.html)] - **[Pseudo-LiDAR]** Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving [[CVPR2019](https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Pseudo-LiDAR_From_Visual_Depth_Estimation_Bridging_the_Gap_in_3D_CVPR_2019_paper.pdf)][[Pytorch](https://github.com/mileyan/pseudo_lidar)] - **[BirdGAN]** Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles [[IROS2019](https://arxiv.org/pdf/1904.08494.pdf)] - **[MonoGRNet]** MonoGRNet: A Geometric Reasoning Network for Monocular 3D Object Localization [[AAAI2019(oral)](https://arxiv.org/abs/1811.10247)][[Tensorflow](https://github.com/Zengyi-Qin/MonoGRNet)] - **[OFT-Net]** Orthographic feature transform for monocular 3d object detection [[BMVC2019](https://bmvc2019.org/wp-content/uploads/papers/0328-paper.pdf)][[Pytorch](https://github.com/tom-roddick/oft)] - **[Shift R-CNN]** Shift R-CNN: Deep Monocular 3D Object Detection with Closed-Form Geometric Constraints [[TIP2019](https://arxiv.org/abs/1905.09970)] - **[SS3D]** SS3D: Monocular 3d object detection and box fitting trained end-to-end using intersection-over-union loss [[Arxiv2019](https://arxiv.org/abs/1906.08070)] ## 2018 - **[Multi-Fusion]** Multi-Level Fusion based 3D Object Detection from Monocular Images [[CVPR2018](https://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_Multi-Level_Fusion_Based_CVPR_2018_paper.pdf)][[Pytorch](https://github.com/abbyxxn/maskrcnn-benchmark-3d)] - **[Mono3D++]** Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors [[AAAI2018](https://arxiv.org/abs/1901.03446)] ## 2017 - **[Deep3DBox]** 3D Bounding Box Estimation Using Deep Learning and Geometry [[CVPR2017](https://arxiv.org/abs/1612.00496)][[Pytorch](https://github.com/skhadem/3D-BoundingBox)][[Tensorflow](https://github.com/smallcorgi/3D-Deepbox)] - **[Deep MANTA]** Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image [[CVPR2017](https://arxiv.org/abs/1703.07570)] ## 2016 - **[Mono3D]** Monocular 3D object detection for autonomous driving [[CVPR2016](https://www.cs.toronto.edu/~urtasun/publications/chen_etal_cvpr16.pdf)] # KITTI Results
| Method | Extra | Test, AP3D|R40 | Val, AP3D|R40 | Reference | ||||
|---|---|---|---|---|---|---|---|---|
| Easy | Mod. | Hard | Easy | Mod. | Hard | |||
| LPCG | Lidar+raw | 25.56 | 17.80 | 15.38 | 31.15 | 23.42 | 20.60 | ECCV2022 |
| CMKD | Lidar+raw | 28.55 | 18.69 | 16.77 | - | - | - | ECCV2022 |
| MonoPSR | Lidar | 10.76 | 7.25 | 5.85 | - | - | - | CVPR2019 |
| MonoRUn | Lidar | 19.65 | 12.30 | 10.58 | 20.02 | 14.65 | 12.61 | CVPR2021 |
| CaDDN | Lidar | 19.17 | 13.41 | 11.46 | 23.57 | 16.31 | 13.84 | CVPR2021 |
| MonoDistill | Lidar | 22.97 | 16.03 | 13.60 | 24.31 | 18.47 | 15.76 | ICLR2022 |
| AM3D | Depth | 16.50 | 10.74 | 9.52 | 28.31 | 15.76 | 12.24 | ICCV2019 |
| PatchNet | Depth | 15.68 | 11.12 | 10.17 | 31.60 | 16.80 | 13.80 | ECCV2020 |
| D4LCN | Depth | 16.65 | 11.72 | 9.51 | 22.32 | 16.20 | 12.30 | CVPRW2020 |
| DFR-Net | Depth | 19.40 | 13.63 | 10.35 | 24.81 | 17.78 | 14.41 | ICCV2021 |
| Pseudo-Stereo | Depth | 23.74 | 17.74 | 15.14 | 35.18 | 24.15 | 20.35 | CVPR2022 |
| M3D-RPN | None | 14.76 | 9.71 | 7.42 | 14.53 | 11.07 | 8.65 | ICCV2019 |
| SMOKE | None | 14.03 | 9.76 | 7.84 | - | - | - | CVPRW2020 |
| MonoPair | None | 13.04 | 9.99 | 8.65 | 16.28 | 12.30 | 10.42 | CVPR2020 |
| RTM3D | None | 14.41 | 10.34 | 8.77 | - | - | - | ECCV2020 |
| M3DSSD | None | 17.51 | 11.46 | 8.98 | - | - | - | CVPR2021 |
| Monoflex | None | 19.94 | 13.89 | 12.07 | 23.64 | 17.51 | 14.83 | CVPR2021 |
| GUPNet | None | 20.11 | 14.20 | 11.77 | 22.76 | 16.46 | 13.72 | ICCV2021 |
| MonoCon | None | 22.50 | 16.46 | 13.95 | 26.33 | 19.01 | 15.98 | AAAI2022 |
| MonoDDE | None | 24.93 | 17.14 | 15.10 | 26.66 | 19.75 | 16.72 | CVPR2022 |
| MonoXiver | None | 25.24 | 19.04 | 16.39 | 30.48 | 22.40 | 19.13 | ICCV2023 |