Add File
This commit is contained in:
280
src/main/java/org/dromara/easyai/rnnNerveEntity/Nerve.java
Normal file
280
src/main/java/org/dromara/easyai/rnnNerveEntity/Nerve.java
Normal file
@@ -0,0 +1,280 @@
|
||||
package org.dromara.easyai.rnnNerveEntity;
|
||||
|
||||
|
||||
import org.dromara.easyai.matrixTools.Matrix;
|
||||
import org.dromara.easyai.matrixTools.MatrixOperation;
|
||||
import org.dromara.easyai.config.RZ;
|
||||
import org.dromara.easyai.i.ActiveFunction;
|
||||
import org.dromara.easyai.i.OutBack;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
* @author lidapeng
|
||||
* 神经元,所有类别神经元都要继承的类,具有公用属性
|
||||
* @date 9:36 上午 2019/12/21
|
||||
*/
|
||||
public abstract class Nerve {
|
||||
private final List<Nerve> son = new ArrayList<>();//轴突下一层的连接神经元
|
||||
private final List<Nerve> rnnOut = new ArrayList<>();//rnn隐层输出神经元集合
|
||||
private final List<Nerve> father = new ArrayList<>();//树突上一层的连接神经元
|
||||
protected Map<Integer, Float> dendrites = new HashMap<>();//上一层权重(需要取出)
|
||||
protected Map<Integer, Float> wg = new HashMap<>();//上一层权重与梯度的积
|
||||
private final int id;//同级神经元编号,注意在同层编号中ID应有唯一性
|
||||
boolean fromOutNerve = false;//是否是输出神经元
|
||||
protected int upNub;//上一层神经元数量
|
||||
protected int downNub;//下一层神经元的数量
|
||||
protected int rnnOutNub;//rnn输出神经元数量
|
||||
protected Map<Long, List<Float>> features = new HashMap<>();//上一层神经元输入的数值
|
||||
protected Matrix nerveMatrix;//权重矩阵可获取及注入
|
||||
protected float threshold;//此神经元的阈值需要取出
|
||||
protected String name;//该神经元所属类型
|
||||
protected float outNub;//输出数值(ps:只有训练模式的时候才可保存输出过的数值)
|
||||
protected float E;//模板期望值
|
||||
protected float gradient;//当前梯度
|
||||
protected float studyPoint;
|
||||
protected float sigmaW;//对上一层权重与上一层梯度的积进行求和
|
||||
private int backNub = 0;//当前节点被反向传播的次数
|
||||
protected ActiveFunction activeFunction;
|
||||
private final int rzType;//正则化类型,默认不进行正则化
|
||||
private final float lParam;//正则参数
|
||||
private final Map<Long, Integer> embeddingIndex = new HashMap<>();//记录词向量下标位置
|
||||
|
||||
public Map<Integer, Float> getDendrites() {
|
||||
return dendrites;
|
||||
}
|
||||
|
||||
public Matrix getNerveMatrix() {
|
||||
return nerveMatrix;
|
||||
}
|
||||
|
||||
public void setNerveMatrix(Matrix nerveMatrix) {
|
||||
this.nerveMatrix = nerveMatrix;
|
||||
}
|
||||
|
||||
public void setDendrites(Map<Integer, Float> dendrites) {
|
||||
this.dendrites = dendrites;
|
||||
}
|
||||
|
||||
public float getThreshold() {
|
||||
return threshold;
|
||||
}
|
||||
|
||||
public void setThreshold(float threshold) {
|
||||
this.threshold = threshold;
|
||||
}
|
||||
|
||||
protected Nerve(int id, int upNub, String name, int downNub,
|
||||
float studyPoint, boolean init, ActiveFunction activeFunction, int rzType, float lParam, int rnnOutNub) throws Exception {//该神经元在同层神经元中的编号
|
||||
this.id = id;
|
||||
this.upNub = upNub;
|
||||
this.name = name;
|
||||
this.downNub = downNub;
|
||||
this.studyPoint = studyPoint;
|
||||
this.activeFunction = activeFunction;
|
||||
this.rzType = rzType;
|
||||
this.lParam = lParam;
|
||||
this.rnnOutNub = rnnOutNub;
|
||||
if (name.equals("OutNerve")) {
|
||||
fromOutNerve = true;
|
||||
}
|
||||
initPower(init);//生成随机权重
|
||||
}
|
||||
|
||||
protected void setStudyPoint(float studyPoint) {
|
||||
this.studyPoint = studyPoint;
|
||||
}
|
||||
|
||||
public void sendMessage(long eventId, float parameter, boolean isStudy, Map<Integer, Float> E
|
||||
, OutBack outBack, boolean isEmbedding, Matrix rnnMatrix) throws Exception {
|
||||
if (!son.isEmpty()) {
|
||||
for (Nerve nerve : son) {
|
||||
nerve.input(eventId, parameter, isStudy, E, outBack, isEmbedding, rnnMatrix);
|
||||
}
|
||||
} else {
|
||||
throw new Exception("this layer is lastIndex");
|
||||
}
|
||||
}
|
||||
|
||||
public void sendRnnMessage(long eventId, float parameter, boolean isStudy, Map<Integer, Float> E
|
||||
, OutBack outBack, boolean isEmbedding, Matrix rnnMatrix) throws Exception {
|
||||
if (!rnnOut.isEmpty()) {
|
||||
for (Nerve nerve : rnnOut) {
|
||||
nerve.input(eventId, parameter, isStudy, E, outBack, isEmbedding, rnnMatrix);
|
||||
}
|
||||
} else {
|
||||
throw new Exception("this layer is lastIndex");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private void backSendMessage(long eventId, boolean fromOutNerve) throws Exception {//反向传播
|
||||
if (!father.isEmpty()) {
|
||||
for (int i = 0; i < father.size(); i++) {
|
||||
father.get(i).backGetMessage(wg.get(i + 1), eventId, fromOutNerve);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
protected void input(long eventId, float parameter, boolean isStudy
|
||||
, Map<Integer, Float> E, OutBack imageBack, boolean isEmbedding, Matrix rnnMatrix) throws Exception {//输入参数
|
||||
|
||||
}
|
||||
|
||||
|
||||
private void backGetMessage(float parameter, long eventId, boolean fromOutNerve) throws Exception {//反向传播
|
||||
backNub++;
|
||||
//sigmaW = ArithUtil.add(sigmaW, parameter);
|
||||
sigmaW = sigmaW + parameter;
|
||||
int number;
|
||||
if (fromOutNerve) {
|
||||
number = rnnOutNub;
|
||||
} else {
|
||||
number = downNub;
|
||||
}
|
||||
if (backNub == number) {//进行新的梯度计算
|
||||
backNub = 0;
|
||||
gradient = activeFunction.functionG(outNub) * sigmaW;
|
||||
updatePower(eventId);//修改阈值
|
||||
}
|
||||
}
|
||||
|
||||
protected void updatePower(long eventId) throws Exception {//修改阈值
|
||||
//float h = ArithUtil.mul(gradient, studyPoint);//梯度下降
|
||||
float h = gradient * studyPoint;
|
||||
//threshold = ArithUtil.add(threshold, -h);//更新阈值
|
||||
threshold = threshold - h;
|
||||
updateW(h, eventId);
|
||||
sigmaW = 0;//求和结果归零
|
||||
backSendMessage(eventId, fromOutNerve);
|
||||
}
|
||||
|
||||
private float regularization(float w, float param) {//正则化类型
|
||||
float re = 0.0F;
|
||||
if (rzType != RZ.NOT_RZ) {
|
||||
if (rzType == RZ.L2) {
|
||||
//re = ArithUtil.mul(param, -w);
|
||||
re = param * -w;
|
||||
} else if (rzType == RZ.L1) {
|
||||
if (w > 0) {
|
||||
re = -param;
|
||||
} else if (w < 0) {
|
||||
re = param;
|
||||
}
|
||||
}
|
||||
}
|
||||
return re;
|
||||
}
|
||||
|
||||
private void updateW(float h, long eventId) {//h是学习率 * 当前g(梯度)
|
||||
List<Float> list = features.get(eventId);
|
||||
float param = 0;
|
||||
if (rzType != RZ.NOT_RZ) {
|
||||
double sigma = 0;
|
||||
for (Map.Entry<Integer, Float> entry : dendrites.entrySet()) {
|
||||
if (rzType == RZ.L2) {
|
||||
sigma = sigma + (float) Math.pow(entry.getValue(), 2);
|
||||
} else {
|
||||
sigma = sigma + (float) Math.abs(entry.getValue());
|
||||
}
|
||||
}
|
||||
param = (float) sigma * lParam * studyPoint;
|
||||
}
|
||||
for (Map.Entry<Integer, Float> entry : dendrites.entrySet()) {
|
||||
int key = entry.getKey();//上层隐层神经元的编号
|
||||
float w = entry.getValue();//接收到编号为KEY的上层隐层神经元的权重
|
||||
float bn = list.get(key - 1);//接收到编号为KEY的上层隐层神经元的输入
|
||||
float wp = bn * h;
|
||||
float dm = w * gradient;
|
||||
float regular = regularization(w, param);//正则化抑制权重s
|
||||
w = w + regular;
|
||||
w = w + wp;
|
||||
wg.put(key, dm);//保存上一层权重与梯度的积
|
||||
dendrites.put(key, w);//保存修正结果
|
||||
}
|
||||
features.remove(eventId); //清空当前上层输入参数参数
|
||||
}
|
||||
|
||||
protected boolean insertParameter(long eventId, float parameter, boolean embedding) {//添加参数
|
||||
boolean allReady = false;
|
||||
List<Float> featuresList;
|
||||
if (features.containsKey(eventId)) {
|
||||
featuresList = features.get(eventId);
|
||||
} else {
|
||||
featuresList = new ArrayList<>();
|
||||
features.put(eventId, featuresList);
|
||||
}
|
||||
if (embedding && parameter > 0.5) {
|
||||
embeddingIndex.put(eventId, featuresList.size());
|
||||
}
|
||||
featuresList.add(parameter);
|
||||
if (featuresList.size() >= upNub) {
|
||||
allReady = true;
|
||||
}
|
||||
return allReady;
|
||||
}
|
||||
|
||||
protected void destoryParameter(long eventId) {//销毁参数
|
||||
features.remove(eventId);
|
||||
}
|
||||
|
||||
protected float getWOne(long eventId) {
|
||||
int index = embeddingIndex.get(eventId);
|
||||
return dendrites.get(index + 1);
|
||||
}
|
||||
|
||||
protected float calculation(long eventId, boolean isEmbedding) {//计算当前输出结果
|
||||
float sigma = 0;
|
||||
List<Float> featuresList = features.get(eventId);
|
||||
if (!isEmbedding) {
|
||||
for (int i = 0; i < featuresList.size(); i++) {
|
||||
float value = featuresList.get(i);
|
||||
float w = dendrites.get(i + 1);//当value不为0的时候把w取出来
|
||||
sigma = w * value + sigma;
|
||||
}
|
||||
} else {
|
||||
int index = embeddingIndex.get(eventId);
|
||||
sigma = featuresList.get(index) * dendrites.get(index + 1);
|
||||
embeddingIndex.remove(eventId);
|
||||
}
|
||||
return sigma - threshold;//ArithUtil.sub(sigma, threshold);
|
||||
}
|
||||
|
||||
private void initPower(boolean init) {//初始化权重及阈值
|
||||
Random random = new Random();
|
||||
if (upNub > 0) {//输入个数
|
||||
float sh = (float) Math.sqrt(upNub);
|
||||
for (int i = 1; i < upNub + 1; i++) {
|
||||
float nub = 0;
|
||||
if (init) {
|
||||
nub = random.nextFloat() / sh;
|
||||
}
|
||||
dendrites.put(i, nub);//random.nextFloat()
|
||||
}
|
||||
//生成随机阈值
|
||||
float nub = 0;
|
||||
if (init) {
|
||||
nub = random.nextFloat() / sh;
|
||||
}
|
||||
threshold = nub;
|
||||
}
|
||||
}
|
||||
|
||||
public int getId() {
|
||||
return id;
|
||||
}
|
||||
|
||||
|
||||
public void connect(List<Nerve> nerveList) {
|
||||
son.addAll(nerveList);//连接下一层
|
||||
}
|
||||
|
||||
public void connectOut(List<Nerve> nerveList) {
|
||||
rnnOut.addAll(nerveList);
|
||||
}
|
||||
|
||||
public void connectFather(List<Nerve> nerveList) {
|
||||
father.addAll(nerveList);//连接上一层
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user