This commit is contained in:
2025-09-04 14:09:36 +08:00
parent 593fccf135
commit c05a753913

View File

@@ -0,0 +1,464 @@
package org.dromara.easyai.nerveCenter;
import org.dromara.easyai.conv.ConvCount;
import org.dromara.easyai.i.CustomEncoding;
import org.dromara.easyai.matrixTools.Matrix;
import org.dromara.easyai.i.ActiveFunction;
import org.dromara.easyai.nerveEntity.*;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* 神经网络管理工具
* 创建神经网络
*
* @author lidapeng
* @date 11:05 上午 2019/12/21
*/
public class NerveManager extends ConvCount {
private final int hiddenNerveNub;//隐层神经元个数
private final int sensoryNerveNub;//输入神经元个数
private final int outNerveNub;//输出神经元个数
private final int hiddenDepth;//隐层深度
private final List<SensoryNerve> sensoryNerves = new ArrayList<>();//感知神经元
private SensoryNerve convInput;//卷积网络输入神经元
private final List<List<Nerve>> depthNerves = new ArrayList<>();//隐层神经元
private List<Nerve> convDepthNerves = new ArrayList<>();//卷积隐层神经元
private final List<Nerve> outNerves = new ArrayList<>();//输出神经元
private final List<Nerve> softMaxList = new ArrayList<>();//softMax层
private boolean initPower;
private float studyPoint = 0.001f;//学习率
private float convStudyPoint = 0.001f;//卷积学习率
private float oneConvRate = 0.001f;
private final ActiveFunction activeFunction;
private final int rzType;//正则化类型,默认不进行正则化
private final float lParam;//正则参数
private final int coreNumber;
private final float gaMa;//自适应学习率
private final float gMaxTh;//梯度裁剪阈值
private final boolean auto;
public SensoryNerve getConvInput() {
return convInput;
}
private Map<String, Float> conversion(Map<Integer, Float> map) {
Map<String, Float> cMap = new HashMap<>();
for (Map.Entry<Integer, Float> entry : map.entrySet()) {
cMap.put(String.valueOf(entry.getKey()), entry.getValue());
}
return cMap;
}
private Map<Integer, Float> unConversion(Map<String, Float> map) {
Map<Integer, Float> cMap = new HashMap<>();
for (Map.Entry<String, Float> entry : map.entrySet()) {
cMap.put(Integer.parseInt(entry.getKey()), entry.getValue());
}
return cMap;
}
private ModelParameter getDymModelParameter() throws Exception {//获取动态神经元参数
ModelParameter modelParameter = new ModelParameter();
List<ConvDymNerveStudy> convStudies = new ArrayList<>();
modelParameter.setDymNerveStudies(convStudies);
for (Nerve convDepthNerve : convDepthNerves) {
ConvParameter convParameter = convDepthNerve.getConvParameter();
List<Matrix> nerveMatrixList = convParameter.getNerveMatrixList();//权重矩阵
ConvDymNerveStudy convDymNerveStudy = new ConvDymNerveStudy();
List<List<Float>> oneConvList = convParameter.getOneConvPower();
List<DymNerveStudy> dymNerveStudies = new ArrayList<>();//一个卷积层的所有权重参数
convDymNerveStudy.setOneConvPower(oneConvList);
convDymNerveStudy.setDymNerveStudyList(dymNerveStudies);
for (Matrix nerveMatrix : nerveMatrixList) {
DymNerveStudy deepNerveStudy = new DymNerveStudy();//动态神经元隐层
List<Float> list = deepNerveStudy.getList();
insertWList(nerveMatrix, list);
dymNerveStudies.add(deepNerveStudy);
}
convStudies.add(convDymNerveStudy);
}
getStaticModelParameter(modelParameter);
return modelParameter;
}
private void insertWList(Matrix matrix, List<Float> list) throws Exception {//
for (int i = 0; i < matrix.getX(); i++) {
for (int j = 0; j < matrix.getY(); j++) {
list.add(matrix.getNumber(i, j));
}
}
}
public ModelParameter getConvModel() throws Exception {
return getDymModelParameter();
}
public ModelParameter getDnnModel() throws Exception {
ModelParameter modelParameter = new ModelParameter();
getStaticModelParameter(modelParameter);
return modelParameter;
}
private void getStaticModelParameter(ModelParameter modelParameter) {//获取当前模型参数
List<List<NerveStudy>> studyDepthNerves = new ArrayList<>();//隐层神经元模型
List<NerveStudy> outStudyNerves = new ArrayList<>();//输出神经元
//隐层神经元
for (List<Nerve> depthNerve : depthNerves) {
//创建一层深度的隐层神经元模型
List<NerveStudy> deepNerve = new ArrayList<>();
for (Nerve nerve : depthNerve) {
//遍历某一层深度的所有隐层神经元
NerveStudy nerveStudy = new NerveStudy();
nerveStudy.setThreshold(nerve.getThreshold());
nerveStudy.setDendrites(conversion(nerve.getDendrites()));
deepNerve.add(nerveStudy);
}
studyDepthNerves.add(deepNerve);
}
for (Nerve nerve : outNerves) {
NerveStudy nerveStudy = new NerveStudy();
nerveStudy.setThreshold(nerve.getThreshold());
nerveStudy.setDendrites(conversion(nerve.getDendrites()));
outStudyNerves.add(nerveStudy);
}
modelParameter.setDepthNerves(studyDepthNerves);
modelParameter.setOutNerves(outStudyNerves);
}
public void insertConvModel(ModelParameter modelParameter) throws Exception {
insertConvolutionModelParameter(modelParameter);//动态神经元注入
}
public void insertDnnModel(ModelParameter modelParameter) {
insertBpModelParameter(modelParameter);//全连接层注入参数
}
//注入卷积层模型参数
private void insertConvolutionModelParameter(ModelParameter modelParameter) throws Exception {
List<ConvDymNerveStudy> allDymNerveStudyList = modelParameter.getDymNerveStudies();
for (int t = 0; t < allDymNerveStudyList.size(); t++) {
ConvParameter convParameter = convDepthNerves.get(t).getConvParameter();
List<Matrix> nerveMatrixList = convParameter.getNerveMatrixList();
ConvDymNerveStudy convDymNerveStudy = allDymNerveStudyList.get(t);
List<List<Float>> oneConvPower = convDymNerveStudy.getOneConvPower();
if (oneConvPower != null && !oneConvPower.isEmpty()) {
convParameter.setOneConvPower(oneConvPower);
}
List<DymNerveStudy> dymNerveStudyList = convDymNerveStudy.getDymNerveStudyList();
if (dymNerveStudyList.size() != nerveMatrixList.size()) {
throw new Exception("卷积层数量参数与模型不匹配");
}
for (int i = 0; i < dymNerveStudyList.size(); i++) {
List<Float> list = dymNerveStudyList.get(i).getList();
Matrix nerveMatrix = nerveMatrixList.get(i);
insertMatrix(nerveMatrix, list);
}
}
insertBpModelParameter(modelParameter);//全连接层注入参数
}
private void insertMatrix(Matrix matrix, List<Float> list) throws Exception {
for (int i = 0; i < list.size(); i++) {
matrix.setNub(i, 0, list.get(i));
}
}
//注入全连接模型参数
private void insertBpModelParameter(ModelParameter modelParameter) {
List<List<NerveStudy>> depthStudyNerves = modelParameter.getDepthNerves();//隐层神经元
List<NerveStudy> outStudyNerves = modelParameter.getOutNerves();//输出神经元
//隐层神经元参数注入
for (int i = 0; i < depthNerves.size(); i++) {
List<NerveStudy> depth = depthStudyNerves.get(i);//对应的学习结果
List<Nerve> depthNerve = depthNerves.get(i);//深度隐层神经元
for (int j = 0; j < depthNerve.size(); j++) {//遍历当前深度神经元
Nerve nerve = depthNerve.get(j);
NerveStudy nerveStudy = depth.get(j);
//学习结果
Map<Integer, Float> studyDendrites = unConversion(nerveStudy.getDendrites());
//神经元参数注入
Map<Integer, Float> dendrites = nerve.getDendrites();
nerve.setThreshold(nerveStudy.getThreshold());//注入隐层阈值
for (Map.Entry<Integer, Float> entry : dendrites.entrySet()) {
int key = entry.getKey();
dendrites.put(key, studyDendrites.get(key));//注入隐层权重
}
}
}
//输出神经元参数注入
for (int i = 0; i < outNerves.size(); i++) {
Nerve outNerve = outNerves.get(i);
NerveStudy nerveStudy = outStudyNerves.get(i);
outNerve.setThreshold(nerveStudy.getThreshold());
Map<Integer, Float> dendrites = outNerve.getDendrites();
Map<Integer, Float> studyDendrites = unConversion(nerveStudy.getDendrites());
for (Map.Entry<Integer, Float> outEntry : dendrites.entrySet()) {
int key = outEntry.getKey();
dendrites.put(key, studyDendrites.get(key));
}
}
}
/**
* 初始化神经元参数
*
* @param sensoryNerveNub 输入神经元个数
* @param hiddenNerveNub 隐层神经元个数
* @param outNerveNub 输出神经元个数
* @param hiddenDepth 隐层深度
* @param activeFunction 激活函数
* @param studyPoint 线性分类器学习率
* @param rzType 正则函数
* @param lParam 正则系数
* @param coreNumber 并行计算核心数
* @param gaMa 自适应学习率衰减系数
* @param gMaxTh 梯度裁剪阈值
* @param auTo 是否使用自适应学习率
* @throws Exception 如果参数错误则抛异常
*/
public NerveManager(int sensoryNerveNub, int hiddenNerveNub, int outNerveNub
, int hiddenDepth, ActiveFunction activeFunction, float studyPoint, int rzType, float lParam
, int coreNumber, float gaMa, float gMaxTh, boolean auTo) throws Exception {
if (sensoryNerveNub > 0 && hiddenNerveNub > 0 && outNerveNub > 0 && hiddenDepth > 0 && activeFunction != null) {
this.coreNumber = coreNumber;
this.gaMa = gaMa;
this.auto = auTo;
this.gMaxTh = gMaxTh;
this.hiddenNerveNub = hiddenNerveNub;
this.sensoryNerveNub = sensoryNerveNub;
this.outNerveNub = outNerveNub;
this.hiddenDepth = hiddenDepth;
this.activeFunction = activeFunction;
this.rzType = rzType;
this.lParam = lParam;
if (studyPoint > 0 && studyPoint < 1) {
this.studyPoint = studyPoint;
}
} else {
throw new Exception("param is null");
}
}
public List<SensoryNerve> getSensoryNerves() {//获取感知神经元集合
return sensoryNerves;
}
private List<Nerve> initConDepthNerve(int kernLen, int conHiddenDepth, ActiveFunction convFunction, int channelNo, boolean norm, float GRate) throws Exception {//初始化隐层神经元1
List<Nerve> depthNerves = new ArrayList<>();
for (int i = 0; i < conHiddenDepth; i++) {//遍历深度
float studyPoint = this.convStudyPoint;
if (studyPoint <= 0 || studyPoint > 1) {
throw new Exception("studyPoint Values range from 0 to 1");
}
int downNub = 1;
boolean isConvFinish = false;
if (i == conHiddenDepth - 1) {//卷积层最后一层
downNub = hiddenNerveNub;
isConvFinish = true;
}
HiddenNerve hiddenNerve = new HiddenNerve(1, i + 1, 1, downNub, studyPoint, initPower, convFunction, true
, rzType, lParam, kernLen, 0, 0, isConvFinish, coreNumber, channelNo, oneConvRate, norm,
null, gaMa, gMaxTh, auto, GRate);
depthNerves.add(hiddenNerve);
}
for (int i = 0; i < conHiddenDepth - 1; i++) {//遍历深度
Nerve hiddenNerve = depthNerves.get(i);//当前遍历隐层神经元
Nerve nextHiddenNerve = depthNerves.get(i + 1);//当前遍历的下一层神经元
hiddenNerve.connectSonOnly(nextHiddenNerve);
nextHiddenNerve.connectFatherOnly(hiddenNerve);
}
return depthNerves;
}
private int getNerveNub(int deep, int size, int kernLen) {
int x = size;
int step = 1;
for (int i = 0; i < deep; i++) {
x = (x - (kernLen - step)) / step;
x = x / 2 + x % 2;
}
return x;
}
/**
* 初始化卷积层神经网络
*
* @param channelNo 通道数当该数值为1 则采用多通道降维模式 推荐值1
* @param kernLen 卷积核大小 建议为3
* @param xSize 检测窗口行高
* @param ySize 检测窗口行宽
* @param convStudyPoint 卷积层学习率
* @param convFunction 卷积层激活函数
* @param isShowLog 是否打印学习参数
* @param isSoftMax 最后一层是否用softMax激活
* @param minFeatureValue 卷积层最小特征数量的开方 取值范围 [1,50]
* @param norm 是否进行维度调节true 进行调节, false不进行维度调节
* @param oneConvRate 降维层学习率
* @param GRate 每层的梯度衰减阈值
*/
public void initImageNet(int channelNo, int kernLen, int xSize, int ySize, boolean isSoftMax, boolean isShowLog,
float convStudyPoint, ActiveFunction convFunction, int minFeatureValue, float oneConvRate
, boolean norm, float GRate) throws Exception {
this.initPower = true;
this.oneConvRate = oneConvRate;
if (minFeatureValue < 1 || minFeatureValue > 50) {
throw new Exception("minFeatureValue 取值范围是[1,50]");
}
if (channelNo < 1) {
throw new Exception("通道数不能小于1");
}
if (!norm) {//如果不进行维度调节通道数必须为3
channelNo = 3;
}
this.convStudyPoint = convStudyPoint;
int deep = getConvMyDep(xSize, ySize, kernLen, minFeatureValue);//卷积层深度
if (deep < 2) {
throw new Exception("minFeatureValue 设置过大");
}
List<Nerve> myDepthNerves = initConDepthNerve(kernLen, deep, convFunction, channelNo, norm, GRate);//初始化卷积层隐层
Nerve convFirstNerve = myDepthNerves.get(0);//卷积第一层隐层神经元
Nerve convLastNerve = myDepthNerves.get(myDepthNerves.size() - 1);//卷积最后一层隐层神经元
convDepthNerves = myDepthNerves;
convInput = new SensoryNerve(1, 0, channelNo);//输入神经元
//感知神经元与卷积第一层隐层神经元进行连接
convInput.connectSonOnly(convFirstNerve);
initDepthNerve(kernLen, getNerveNub(deep, xSize, kernLen), getNerveNub(deep, ySize, kernLen), channelNo, null);//初始化深度隐层神经元 depthNerves
List<Nerve> firstNerves = depthNerves.get(0);//线性层第一层隐层神经元
List<Nerve> lastNerveList = depthNerves.get(depthNerves.size() - 1);//线性层最后一层隐层神经元
convLastNerve.connect(firstNerves);//卷积最后一层链接线性层第一层
for (Nerve nerve : firstNerves) {//线性层第一层链接卷积层最后一层
nerve.connectFatherOnly(convLastNerve);
}
List<OutNerve> myOutNerveList = new ArrayList<>();
//初始化输出神经元
for (int i = 1; i < outNerveNub + 1; i++) {
OutNerve outNerve = new OutNerve(i, hiddenNerveNub, 0, studyPoint, initPower,
activeFunction, false, isShowLog, rzType, lParam, isSoftMax, 0
, coreNumber, gaMa, gMaxTh, auto, 1);
//输出层神经元连接最后一层隐层神经元
outNerve.connectFather(lastNerveList);
outNerves.add(outNerve);
myOutNerveList.add(outNerve);
}
//生成softMax层
if (isSoftMax) {//增加softMax层
SoftMax softMax = new SoftMax(outNerveNub, false, myOutNerveList, isShowLog, coreNumber);
softMaxList.add(softMax);
for (Nerve nerve : outNerves) {
nerve.connect(softMaxList);
}
}
//最后一层隐层神经元 与输出神经元进行连接
for (Nerve nerve : lastNerveList) {
nerve.connect(outNerves);
}
}
/**
* 初始化
*
* @param initPower 是否是第一次注入
* @param isShowLog 是否打印学习参数
* @param isSoftMax 最后一层是否用softMax激活
*/
public void init(boolean initPower, boolean isShowLog, boolean isSoftMax, CustomEncoding customEncoding) throws Exception {//进行神经网络的初始化构建
this.initPower = initPower;
initDepthNerve(0, 0, 0, 0, customEncoding);//初始化深度隐层神经元
List<Nerve> nerveList = depthNerves.get(0);//第一层隐层神经元
//最后一层隐层神经元啊
List<Nerve> lastNerveList = depthNerves.get(depthNerves.size() - 1);
List<OutNerve> myOutNerveList = new ArrayList<>();
//初始化输出神经元
for (int i = 1; i < outNerveNub + 1; i++) {
OutNerve outNerve = new OutNerve(i, hiddenNerveNub, 0, studyPoint, initPower,
activeFunction, false, isShowLog, rzType, lParam, isSoftMax, 0
, coreNumber, gaMa, gMaxTh, auto, 1);
//输出层神经元连接最后一层隐层神经元
outNerve.connectFather(lastNerveList);
outNerves.add(outNerve);
myOutNerveList.add(outNerve);
}
//生成softMax层
if (isSoftMax) {//增加softMax层
SoftMax softMax = new SoftMax(outNerveNub, false, myOutNerveList, isShowLog, coreNumber);
softMaxList.add(softMax);
for (Nerve nerve : outNerves) {
nerve.connect(softMaxList);
}
}
//最后一层隐层神经元 与输出神经元进行连接
for (Nerve nerve : lastNerveList) {
nerve.connect(outNerves);
}
//初始化感知神经元
for (int i = 1; i < sensoryNerveNub + 1; i++) {
SensoryNerve sensoryNerve = new SensoryNerve(i, 0, 0);
//感知神经元与第一层隐层神经元进行连接
sensoryNerve.connect(nerveList);
sensoryNerves.add(sensoryNerve);
}
}
private void initDepthNerve(int kernLen, int matrixX, int matrixY, int channelNo, CustomEncoding customEncoding) throws Exception {//初始化隐层神经元1
for (int i = 0; i < hiddenDepth; i++) {//遍历深度
List<Nerve> hiddenNerveList = new ArrayList<>();
float studyPoint = this.studyPoint;
if (studyPoint <= 0 || studyPoint > 1) {
throw new Exception("studyPoint Values range from 0 to 1");
}
CustomEncoding myCustomEncoding = null;
if (i == 0) {
myCustomEncoding = customEncoding;
}
for (int j = 1; j < hiddenNerveNub + 1; j++) {//遍历同级
int upNub;
int downNub;
int myMatrixX = 0;
int myMatrixY = 0;
if (i == 0) {
myMatrixX = matrixX;
myMatrixY = matrixY;
if (matrixX > 0 && matrixY > 0) {
upNub = matrixX * matrixY * channelNo;
} else {
upNub = sensoryNerveNub;
}
} else {
upNub = hiddenNerveNub;
}
if (i == hiddenDepth - 1) {//最后一层隐层神经元z
downNub = outNerveNub;
} else {
downNub = hiddenNerveNub;
}
HiddenNerve hiddenNerve = new HiddenNerve(j, i + 1, upNub, downNub, studyPoint, initPower, activeFunction, false
, rzType, lParam, kernLen, myMatrixX, myMatrixY, false, coreNumber, 0, oneConvRate, false
, myCustomEncoding, gaMa, gMaxTh, auto, 1);
hiddenNerveList.add(hiddenNerve);
}
depthNerves.add(hiddenNerveList);
}
initHiddenNerve();
}
private void initHiddenNerve() {//初始化隐层神经元2
for (int i = 0; i < hiddenDepth - 1; i++) {//遍历深度
List<Nerve> hiddenNerveList = depthNerves.get(i);//当前遍历隐层神经元
List<Nerve> nextHiddenNerveList = depthNerves.get(i + 1);//当前遍历的下一层神经元
for (Nerve hiddenNerve : hiddenNerveList) {
hiddenNerve.connect(nextHiddenNerveList);
}
for (Nerve nextHiddenNerve : nextHiddenNerveList) {
nextHiddenNerve.connectFather(hiddenNerveList);
}
}
}
}