/* * Copyright 2018 the original author or authors. * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by * applicable law or agreed to in writing, software distributed under the * License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS * OF ANY KIND, either express or implied. See the License for the specific * language governing permissions and limitations under the License. */ package com.gitee.drinkjava2.frog.temp; /** * * 临时类,待删,测试一个细胞有三个输入,并且每个输入是双通道(奖罚)情况下是否可以实现所有的模式识别 * 处理逻辑为 (信号x正权重)取1为饱和值 - 信号x负权重,当结果大于0.5时输出1。 这个逻辑是模拟网上找到的“大脑只需单个神经元就可进行XOR异或运算”一文 * 原理。只不过这里扩展到三个(或以上)输入的情况。 * * 三个输入有8种排列组合,如一组参数能实现任意8种组合,则有2的8次方=256种排列组合,去除全为0的输入必须输出0,只计算有1信号的输入,则有2的7次方=128种组合) * (经实测,有31种组合条件不,不能找到符合要求的正负权重) * * (4个通道有16种排列组合,如一组参数能实现任意16种组合,则有2的16次方=65536种排列组合,去除全为0的输入,则有2的15次方32768种组合) * (经实测,32768组合中有29987种不能找到符合要求的正负权重,如只测前1024个组合,则有603种情况不能找到解,如只测前128组合,则有31种情况下找不到解) * * * */ @SuppressWarnings("all") public class TestInput3 { // public static void main(String[] args) { // testInput3(); // //testInput4(); // } public static void testInput3() { //这里测试一个细胞有三个树突输入,每个输入有正负两种信号,且信号以1为饱和,测试结果发现有31种情况无法找到解 long notFoundCont = 0; boolean pass = false; float p = 0.1f; for (int i = 0; i < 128; i++) { found: // for (float a = 0; a < 1.001; a += p) { for (float b = 0; b < 1.001; b += p) { for (float c = 0; c < 1.001; c += p) { for (float d = 0; d < 1.001; d += p) { for (float e = 0; e < 1.001; e += p) { for (float f = 0; f < 1.001; f += p) { pass = true; int bt = 1; int x, y, z; for (int n = 1; n <= 7; n++) { x = ((n & 4) > 0) ? 1 : 0; y = ((n & 2) > 0) ? 1 : 0; z = ((n & 1) > 0) ? 1 : 0; int shouldbe = (i & bt) > 0 ? 1 : 0; float v = x * a + y * b + z * c; //正信号累加 if (v > 1) //如饱和取1 v = 1f; float v1 = x * d + y * e + z * f; //负信号累加 if (v1 > 1) v1 = 1f; v = v - v1; int result = v >= 0.5 ? 1 : 0; if (result != shouldbe) { pass = false; break; } bt = bt << 1; } if (pass) { System.out.print("i=" + i + " found, i=" + bin(i)); System.out.println(" " + r(a) + ", " + r(b) + ", " + r(c) + " " + r(d) + ", " + r(e) + ", " + r(f)); bt = 1; for (int n = 1; n <= 7 && false; n++) { x = ((n & 4) > 0) ? 1 : 0; y = ((n & 2) > 0) ? 1 : 0; z = ((n & 1) > 0) ? 1 : 0; int shouldbe = (i & bt) > 0 ? 1 : 0; System.out.println(" " + x + "*" + r(a) + " + " + y + "*" + r(b) + " + " + z + "*" + r(c) + " - " + x + "*" + r(d) + " - " + y + "*" + r(e) + " - " + z + "*" + r(f) + " = " + shouldbe); bt = bt << 1; } break found; } } } } } } } if (!pass) { System.out.println("i=" + i + " not found, i=" + bin(i)); notFoundCont++; } } System.out.println("notFoundCont=" + notFoundCont); } public static void testInput4() {//这里测试一个细胞有4个树突输入,每个输入有正负两种信号,且信号以1为饱和,测试结果发现有603种情况无法找到解 long notFoundCont = 0; boolean pass = false; float p = 0.2f; for (int i = 0; i < 1024; i++) { found: // for (float a = 0; a < 1.001; a += p) { for (float b = 0; b < 1.001; b += p) { for (float c = 0; c < 1.001; c += p) { for (float d = 0; d < 1.001; d += p) { for (float e = 0; e < 1.001; e += p) { for (float f = 0; f < 1.001; f += p) { for (float g = 0; g < 1.001; g += p) { for (float h = 0; h < 1.001; h += p) { pass = true; int bt = 1; int x, y, z, m; for (int n = 1; n <= 15; n++) { x = ((n & 8) > 0) ? 1 : 0; y = ((n & 4) > 0) ? 1 : 0; z = ((n & 2) > 0) ? 1 : 0; m = ((n & 1) > 0) ? 1 : 0; int shouldbe = (i & bt) > 0 ? 1 : 0; float v = x * a + y * b + z * c + m * d; //正信号累加 if (v > 1) //如饱和取1 v = 1f; float v1 = x * e + y * f + z * g + m * h; //负信号累加 if (v1 > 1) v1 = 1f; v = v - v1; int result = v >= 0.5 ? 1 : 0; if (result != shouldbe) { pass = false; break; } bt = bt << 1; } if (pass) { System.out.print("i=" + i + " found, i=" + bin(i)); System.out.println(" " + r(a) + ", " + r(b) + ", " + r(c) + ", " + r(d) + " " + r(e) + ", " + r(f) + ", " + r(g) + ", " + r(h)); bt = 1; for (int n = 1; n <= 15; n++) { x = ((n & 8) > 0) ? 1 : 0; y = ((n & 4) > 0) ? 1 : 0; z = ((n & 2) > 0) ? 1 : 0; m = ((n & 1) > 0) ? 1 : 0; int shouldbe = (i & bt) > 0 ? 1 : 0; System.out.println(" " + x + "*" + r(a) + " + " + y + "*" + r(b) + " + " + z + "*" + r(c) + " + " + m + "*" + r(d) // + " - " + x + "*" + r(e) + " - " + y + "*" + r(f) + " - " + z + "*" + r(g) + " - " + m + "*" + r(h) + " = " + shouldbe); bt = bt << 1; } break found; } } } } } } } } } if (!pass) { System.out.println("i=" + i + " not found, i=" + bin(i)); notFoundCont++; } } System.out.println("notFoundCont=" + notFoundCont); } static float r(float f) { //取小数后2位 return Math.round(f * 100) * 1.0f / 100; } static String bin(int i) { //转二进制 String ibin = Integer.toBinaryString(i); while (ibin.length() < 7) ibin = "0" + ibin; return ibin; } }