This commit is contained in:
2025-10-09 16:08:50 +08:00
parent ff07b59c06
commit 5089ecd4d1

View File

@@ -0,0 +1,201 @@
/*
* Copyright 2018 the original author or authors.
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by
* applicable law or agreed to in writing, software distributed under the
* License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
* OF ANY KIND, either express or implied. See the License for the specific
* language governing permissions and limitations under the License.
*/
package com.gitee.drinkjava2.frog.temp;
/**
*
* 临时类,待删,测试一个细胞有三个输入,并且每个输入是双通道(奖罚)情况下是否可以实现所有的模式识别
* 处理逻辑为 (信号x正权重)取1为饱和值 - 信号x负权重当结果大于0.5时输出1。 这个逻辑是模拟网上找到的“大脑只需单个神经元就可进行XOR异或运算”一文
* 原理。只不过这里扩展到三个(或以上)输入的情况。
*
* 三个输入有8种排列组合如一组参数能实现任意8种组合则有2的8次方=256种排列组合去除全为0的输入必须输出0只计算有1信号的输入则有2的7次方=128种组合
* 经实测有31种组合条件不不能找到符合要求的正负权重
*
* 4个通道有16种排列组合如一组参数能实现任意16种组合则有2的16次方=65536种排列组合去除全为0的输入则有2的15次方32768种组合
* 经实测32768组合中有29987种不能找到符合要求的正负权重如只测前1024个组合则有603种情况不能找到解如只测前128组合则有31种情况下找不到解
*
*
*
*/
@SuppressWarnings("all")
public class TestInput3 {
// public static void main(String[] args) {
// testInput3();
// //testInput4();
// }
public static void testInput3() { //这里测试一个细胞有三个树突输入每个输入有正负两种信号且信号以1为饱和测试结果发现有31种情况无法找到解
long notFoundCont = 0;
boolean pass = false;
float p = 0.1f;
for (int i = 0; i < 128; i++) {
found: //
for (float a = 0; a < 1.001; a += p) {
for (float b = 0; b < 1.001; b += p) {
for (float c = 0; c < 1.001; c += p) {
for (float d = 0; d < 1.001; d += p) {
for (float e = 0; e < 1.001; e += p) {
for (float f = 0; f < 1.001; f += p) {
pass = true;
int bt = 1;
int x, y, z;
for (int n = 1; n <= 7; n++) {
x = ((n & 4) > 0) ? 1 : 0;
y = ((n & 2) > 0) ? 1 : 0;
z = ((n & 1) > 0) ? 1 : 0;
int shouldbe = (i & bt) > 0 ? 1 : 0;
float v = x * a + y * b + z * c; //正信号累加
if (v > 1) //如饱和取1
v = 1f;
float v1 = x * d + y * e + z * f; //负信号累加
if (v1 > 1)
v1 = 1f;
v = v - v1;
int result = v >= 0.5 ? 1 : 0;
if (result != shouldbe) {
pass = false;
break;
}
bt = bt << 1;
}
if (pass) {
System.out.print("i=" + i + " found, i=" + bin(i));
System.out.println(" " + r(a) + ", " + r(b) + ", " + r(c) + " " + r(d) + ", " + r(e) + ", " + r(f));
bt = 1;
for (int n = 1; n <= 7 && false; n++) {
x = ((n & 4) > 0) ? 1 : 0;
y = ((n & 2) > 0) ? 1 : 0;
z = ((n & 1) > 0) ? 1 : 0;
int shouldbe = (i & bt) > 0 ? 1 : 0;
System.out.println(" " + x + "*" + r(a) + " + " + y + "*" + r(b) + " + " + z + "*" + r(c) + " - " + x + "*" + r(d) + " - " + y + "*" + r(e) + " - " + z
+ "*" + r(f) + " = " + shouldbe);
bt = bt << 1;
}
break found;
}
}
}
}
}
}
}
if (!pass) {
System.out.println("i=" + i + " not found, i=" + bin(i));
notFoundCont++;
}
}
System.out.println("notFoundCont=" + notFoundCont);
}
public static void testInput4() {//这里测试一个细胞有4个树突输入每个输入有正负两种信号且信号以1为饱和测试结果发现有603种情况无法找到解
long notFoundCont = 0;
boolean pass = false;
float p = 0.2f;
for (int i = 0; i < 1024; i++) {
found: //
for (float a = 0; a < 1.001; a += p) {
for (float b = 0; b < 1.001; b += p) {
for (float c = 0; c < 1.001; c += p) {
for (float d = 0; d < 1.001; d += p) {
for (float e = 0; e < 1.001; e += p) {
for (float f = 0; f < 1.001; f += p) {
for (float g = 0; g < 1.001; g += p) {
for (float h = 0; h < 1.001; h += p) {
pass = true;
int bt = 1;
int x, y, z, m;
for (int n = 1; n <= 15; n++) {
x = ((n & 8) > 0) ? 1 : 0;
y = ((n & 4) > 0) ? 1 : 0;
z = ((n & 2) > 0) ? 1 : 0;
m = ((n & 1) > 0) ? 1 : 0;
int shouldbe = (i & bt) > 0 ? 1 : 0;
float v = x * a + y * b + z * c + m * d; //正信号累加
if (v > 1) //如饱和取1
v = 1f;
float v1 = x * e + y * f + z * g + m * h; //负信号累加
if (v1 > 1)
v1 = 1f;
v = v - v1;
int result = v >= 0.5 ? 1 : 0;
if (result != shouldbe) {
pass = false;
break;
}
bt = bt << 1;
}
if (pass) {
System.out.print("i=" + i + " found, i=" + bin(i));
System.out.println(" " + r(a) + ", " + r(b) + ", " + r(c) + ", " + r(d) + " " + r(e) + ", " + r(f) + ", " + r(g) + ", " + r(h));
bt = 1;
for (int n = 1; n <= 15; n++) {
x = ((n & 8) > 0) ? 1 : 0;
y = ((n & 4) > 0) ? 1 : 0;
z = ((n & 2) > 0) ? 1 : 0;
m = ((n & 1) > 0) ? 1 : 0;
int shouldbe = (i & bt) > 0 ? 1 : 0;
System.out.println(" " + x + "*" + r(a) + " + " + y + "*" + r(b) + " + " + z + "*" + r(c) + " + " + m + "*" + r(d) //
+ " - " + x + "*" + r(e) + " - " + y + "*" + r(f) + " - " + z + "*" + r(g) + " - " + m + "*" + r(h) + " = " + shouldbe);
bt = bt << 1;
}
break found;
}
}
}
}
}
}
}
}
}
if (!pass) {
System.out.println("i=" + i + " not found, i=" + bin(i));
notFoundCont++;
}
}
System.out.println("notFoundCont=" + notFoundCont);
}
static float r(float f) { //取小数后2位
return Math.round(f * 100) * 1.0f / 100;
}
static String bin(int i) { //转二进制
String ibin = Integer.toBinaryString(i);
while (ibin.length() < 7)
ibin = "0" + ibin;
return ibin;
}
}