Add File
This commit is contained in:
95
docs/en/core/llms.md
Normal file
95
docs/en/core/llms.md
Normal file
@@ -0,0 +1,95 @@
|
||||
# Large Language Models (LLMs)
|
||||
|
||||
|
||||
Agents-Flex provides an abstract implementation interface for Large Language Models (LLMs) called `Llm.java`,
|
||||
supporting two different chat types: `chat` and `chatStream`.
|
||||
|
||||
For various vendors, Agents-Flex offers different implementation classes and communication protocols, including `HTTP`, `SSE`, and `WebSocket` clients.
|
||||
|
||||
## Chat
|
||||
|
||||
In chat conversations of AI LLMs, we need to consider several different scenarios:
|
||||
|
||||
- Simple chat
|
||||
- Chat with Histories
|
||||
- Function Calling
|
||||
|
||||
These capabilities are determined by prompts, so Agents-Flex provides three implementations of prompts:
|
||||
|
||||
- SimplePrompt: Used for simple chat
|
||||
- HistoriesPrompt: Used for chat with Histories
|
||||
- FunctionPrompt: Used for Function Calling
|
||||
|
||||
During the interaction between prompts and LLMs, messages are exchanged. Therefore, Agents-Flex also provides different message implementations:
|
||||
|
||||
- **AiMessage**: The message returned by the LLMs, which includes not only the message content but also data such as token consumption.
|
||||
- **FunctionMessage**: A subclass of AiMessage, returned when using FunctionPrompt in the `chat` method.
|
||||
- **HumanMessage**: Represents messages input by Human during conversations.
|
||||
- **SystemMessage**: Represents system messages, often used to inform the LLM's role, for fine-tuning prompts.
|
||||
|
||||
### Example Code
|
||||
|
||||
**Simple Chat**
|
||||
|
||||
```java
|
||||
public static void main(String[] args) {
|
||||
Llm llm = new OpenAILlm.of("sk-rts5NF6n*******");
|
||||
|
||||
Prompt prompt = new SimplePrompt("what is your name?");
|
||||
String response = llm.chat(prompt);
|
||||
|
||||
System.out.println(response);
|
||||
}
|
||||
```
|
||||
|
||||
**Chat with Histories**
|
||||
|
||||
```java
|
||||
public static void main(String[] args) {
|
||||
Llm llm = new OpenAILlm.of("sk-rts5NF6n*******");
|
||||
|
||||
HistoriesPrompt prompt = new HistoriesPrompt();
|
||||
prompt.addMessage(new SystemMessage("You are now a database development engineer...."));
|
||||
prompt.addMessage(new HumanMessage("Please provide the DDL content for...."));
|
||||
|
||||
String response = llm.chat(prompt);
|
||||
|
||||
System.out.println(response);
|
||||
}
|
||||
```
|
||||
|
||||
**Function Calling**
|
||||
|
||||
Utility class definition:
|
||||
|
||||
```java
|
||||
public class WeatherUtil {
|
||||
|
||||
@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
|
||||
public static String getWeatherInfo(
|
||||
@FunctionParam(name = "city", description = "the city name") String name) {
|
||||
//Here, we should call API through third-party interfaces.
|
||||
return name + "The weather is cloudy turning to overcast. ";
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Create FunctionPrompt and pass it to the LLMs through the `chat` method:
|
||||
|
||||
```java
|
||||
public static void main(String[] args) {
|
||||
OpenAILlmConfig config = new OpenAILlmConfig();
|
||||
config.setApiKey("sk-rts5NF6n*******");
|
||||
|
||||
OpenAILlm llm = new OpenAILlm(config);
|
||||
|
||||
FunctionPrompt prompt = new FunctionPrompt("how's the weather in New York?", WeatherUtil.class);
|
||||
FunctionResultResponse response = llm.chat(prompt);
|
||||
|
||||
//Execute utility class method to obtain result.
|
||||
Object result = response.getFunctionResult();
|
||||
|
||||
System.out.println(result);
|
||||
//"The weather in New York is cloudy turning overcast."
|
||||
}
|
||||
```
|
||||
Reference in New Issue
Block a user